YOMEDIA
NONE

Cho hình vuông ABCD có đỉnh C thuộc đường thẳng \(d:x+2y-6=0\), điểm M(1;1) thuộc cạnh BD

Làm toát mồ hôi mà vẫn không ra, giúp em vs!

Trong mặt phẳng với hệ tọa độ Oxy , cho hình vuông ABCD có đỉnh C thuộc đường thẳng \(d:x+2y-6=0\), điểm M(1;1) thuộc cạnh BD biết rằng hình chiếu vuông góc của điểm M trên cạnh AB và AD đều nằm trên đường thẳng \(\Delta :x+y-1=0\).Tìm tọa độ đỉnh C.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi H K, lần lượt là hình chiếu vuông góc của M trên AB, AD
    Gọi N là giao điểm của KM và BC
    Gọi I là giao điểm của CM và HK
    Ta có DKM vuông tại K và \(\widehat{DKM}=45^0\Rightarrow KM=KD=KM=NC\) (1)
    Lại có MH=MN (do MHBN là hình vuông) Suy ra hai tam giác vuông KMH, CNM bằng nhau \(\Rightarrow \widehat{HKM}=\widehat{MCN}\)
    Mà \(\widehat{NMC}=\widehat{IMK}\) nên \(\widehat{NMC}+\widehat{NCM}=\widehat{IMK}+\widehat{HKM}=90^0\)

    Suy ra \(CI\perp HK\)
    Đường thẳng CI đi qua M(1;1) và vuông góc với đường thẳng d nên \(VTPT \ \overrightarrow{n_{CI}}=VTCP \ \overrightarrow{u_{d}}=(-1;1)\) nên có phương trình

    \(-(x-1)+(y-1)=0\Leftrightarrow x-y=0\)
    Do điểm C thuộc đường thẳng CI và đường thẳng \(\Delta\) nên tọa độ điểm C là nghiệm của hệ phương trình \(\left\{\begin{matrix} x-y=0\\ x+2y-6=0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2\\ y=2 \end{matrix}\right.\)

    Vậy C(2;2)

      bởi hành thư 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON