Cho hệ phương trình \(\left\{ \matrix{{x^2} + {y^2} = 2\left( {a + 1} \right) \hfill \cr {\left( {x + y} \right)^2} = 4 \hfill \cr} \right.\). Tìm các giá trị của a để hệ có nghiệm duy nhất.
Trả lời (1)
-
Giả sử (x ; y) = (x0; y0) là nghiệm duy nhất của hệ. Do hệ phương trình đã cho là hệ phương trình đối xứng đối với các ẩn nên nó cũng có nghiệm là (x ; y) = (y0 ; x0). Từ tính duy nhất của hệ ta suy ra x0 = y0. Do đó
\(\eqalign{& \left\{ {\matrix{{x_0^2 + y_0^2 = 2\left( {{\rm{a}} + 1} \right)} \cr {{{\left( {{x_0} + {y_0}} \right)}^2} = 4} \cr} } \right. \cr & \Rightarrow \left\{ {\matrix{{2x_0^2 = 2\left( {{\rm{a}} + 1} \right)} \cr {4x_0^2 = 4} \cr} } \right. \Rightarrow a = 0. \cr} \)
Ngược lại, nếu a = 0 thì hệ trở thành \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + {y^2} = 2}\\{{{\left( {{\rm{x}} + y} \right)}^2} = 4.}\end{array}} \right.\)
Tuy nhiên, hệ này có nghiệm không duy nhất (dễ thấy hai nghiệm nó là (1 ; 1) và (-1 ; -1). Vậy không có giá trị nào của a thỏa mãn điều kiện của đầu bài.
bởi hà trang 22/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời