Cho biết tập hợp \(E\) có \(n\) phần tử thì số tập hợp con của \(E\) (kể cả tập hợp rỗng và tập \(E\)) là:
Trả lời (1)
-
Số tập con rỗng của \(E\) là số cách chọn ra \(0\) phần tử trong \(n\) phần tử là \(C_n^0\)
Số tập con có \(1\) phần tử của \(E\) là số cách chọn ra \(1\) phần tử trong \(n\) phần tử là \(C_n^1\)
Số tập con có \(2\) phần tử của \(E\) là số cách chọn ra \(2\) phần tử trong \(n\) phần tử là \(C_n^2\)
Số các tập con có \(k\) phần tử \((0\le k\le n)\) của tập hợp \(E\) là số cách chọn ra \(k\) phần tử trong \(n\) phần tử của \(E\) là \(C_n^k\)
Số tập con có \(n\) phần tử của \(E\) là số cách chọn ra \(n\) phần tử trong \(n\) phần tử là \(C_n^n\)
Do đó số tâp con của \(E\) là:
\( C_n^0+C_n^1+ C_n^2+…+ C_n^n\)\(= {(1 + 1)^n} = {2^n}\)
bởi Thu Hang 14/09/2022Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời