Cho ba điểm \(A(-1 ; 1), B(3 ; 1), C(2 ; 4).\) Tìm tọa độ trực tâm \(H\), trọng tâm \(G\) và tâm \(I\) của đường tròn ngoại tiếp tam giác \(ABC\). Hãy kiểm nghiệm lại hệ thức \(\overrightarrow {IH} = 3\overrightarrow {IG} \).
Trả lời (1)
-
Gọi \(H({x_1} ; {y_1})\) là trực tâm tam giác \(ABC.\)
Ta có \(\left\{ \begin{array}{l}\overrightarrow {CH} .\overrightarrow {AB} = 0\\\overrightarrow {BH} .\overrightarrow {AC} = 0\end{array} \right..\) Từ đó dẫn đến \(\left\{ \begin{array}{l}{x_1} - 2 = 0\\{x_1} + {y_1} - 4 = 0\end{array} \right..\)
Suy ra \(H=(2 ; 2).\)
Trọng tâm \(G\) của tam giác \(ABC\) có tọa độ
\(\left\{ \begin{array}{l}{x_G} = \dfrac{{ - 1 + 3 + 2}}{3} = \dfrac{4}{3}\\{y_G} = \dfrac{{1 + 1 + 4}}{3} = 2\end{array} \right.\)
Giả sử \(I({x_2} ; {y_2})\) là tâm đường tròn ngoại tiếp tam giác \(ABC\). Khi đó \(IA=IB\) và \(IA=IC.\)
Từ \(IA=IB\) suy ra
\({({x_2} + 1)^2} + {({y_2} - 1)^2}\)
\(= {({x_2} - 3)^2} + {({y_2} - 1)^2}.\) (1)
Từ \(IA=IC\) suy ra
\({({x_2} + 1)^2} + {({y_2} - 1)^2}\)
\(= {({x_2} - 2)^2} + {({y_2} - 4)^2}.\) (2)
Từ (1) ta có \(x_1=1\), thay vào (2) được \(y_2=2\). Vậy \(I=(1 ; 2).\)
Như vậy \(\overrightarrow {IH} = (1 ; 0) ; \overrightarrow {IG} = \left( {\dfrac{1}{3} ; 0} \right)\).
Từ đó suy ra \(\overrightarrow {IH} = 3\overrightarrow {IG} \).
bởi Anh Nguyễn 23/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời