Bất phương trình \(\left( {2x + 1} \right)\left( {x + 1} \right) + 9 - 5\sqrt {2{x^2} + 3x + 4} < 0\) có tập nghiệm là:
A. \(S = \left( { - \dfrac{3}{2};0} \right)\)
B. \(S = \left( { - \dfrac{5}{2};1} \right)\)
C. \(S = \left( { - \dfrac{5}{2}; - \dfrac{3}{2}} \right) \cup \left( {0;1} \right)\)
D. \(S = \left( { - \infty ; - \dfrac{5}{2}} \right) \cup \left( {1; + \infty } \right)\)
Trả lời (1)
-
Bất phương trình xác định với mọi \(x \in \mathbb{R}\).
Ta có:\(\left( {2x + 1} \right)\left( {x + 1} \right) + 9 - 5\sqrt {2{x^2} + 3x + 4} < 0\)
\( \Leftrightarrow 2{x^2} + 3x + 4 - 5\sqrt {2{x^2} + 3x + 4} + 6 < 0\)
Đặt \(t = \sqrt {2{x^2} + 3x + 4} ,t > 0\). Bất phương trình trở thành
\({t^2} - 5t + 6 < 0 \Leftrightarrow 2 < t < 3\).
Vậy: \(2 < \sqrt {2{x^2} + 3x + 4} < 3 \)
\(\Leftrightarrow 4 < 2{x^2} + 3x + 4 < 9\)
\( \Leftrightarrow \left\{ \begin{array}{l}2{x^2} + 3x > 0\\2{x^2} + 3x - 5 < 0\end{array} \right. \)
\(\Leftrightarrow \left\{ \begin{array}{l}x < - \dfrac{3}{2}{\rm{ \text{ hoặc } x > 0}}\\{\rm{ - }}\dfrac{5}{2} < x < 1\end{array} \right.\)
\( \Leftrightarrow - \dfrac{5}{2} < x < - \dfrac{3}{2}{\rm{ \text{ hoặc } 0 < x < 1}}\)
Bất phương trình có tập nghiệm \(S = \left( { - \dfrac{5}{2}; - \dfrac{3}{2}} \right) \cup \left( {0;1} \right)\).
Chọn C
bởi Lê Chí Thiện
19/02/2021
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



