Bài 64 trang 124 sách bài tập Đại số 10
Giải và biện luận bất phương trình sau theo tham số m \(\left(m-1\right)\sqrt{x}\le0\)
Trả lời (1)
-
Điều kiện xác định \(x\ge0\).
Do \(\sqrt{x}\ge0\) với mọi \(x\ge0\) nên BPT có nghiệm khi:
\(m-1\le0\Leftrightarrow m\le1\).
vậy ta có các trường hợp sau:
- Nếu \(m\le1\) bất phương trình nghiệm đúng với mọi \(x\ge0\).
- Nếu \(m>1\) bất phương trình vô nghiệm.bởi Ngô Đắc Thắng
06/11/2018
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



