YOMEDIA
NONE
  • Câu hỏi:

    Trong mặt phẳng với hệ trục tọa độ \(Oxy\), cho hai đường thẳng \({d_1}:\,\,3x - y - 1 = 0\) và \({d_2}:\,\,x + y - 2 = 0\). Đường tròn có tâm \(I\left( { - a;\,\,b} \right),\,\,a > 0\) thuộc đường thẳng \({d_1}\) tiếp xúc với đường thẳng \({d_2}\) và đi qua \(A\left( {2;\,\, - 1} \right)\). Khi đó, \(a\) thuộc khoảng 

    • A. \(\left( { - 5;\,\, - 4} \right)\)  
    • B. \(\left( {4;\,\,5} \right)\)  
    • C. \(\left( {3;\,\,4} \right)\) 
    • D. \(\left( {2;\,\,3} \right)\)  

    Lời giải tham khảo:

    Đáp án đúng: B

    Vì \(I\left( { - a;\,\,b} \right),\,\,a > 0\) thuộc đường thẳng \({d_1}\) nên \(I\left( { - a;\,\, - 3a - 1} \right)\).

    Khoảng cách từ \(I\left( { - a;\,\,3a - 1} \right)\) đến đường thẳng \({d_2}:\,\,x + y - 2 = 0\) là:

    \(d\left( {I,\,\,{d_2}} \right) = \dfrac{{\left| { - a - 3a - 1 - 2} \right|}}{{\sqrt {{1^2} + {1^2}} }}\)\( = \dfrac{{\left| { - 4a - 3} \right|}}{{\sqrt 2 }}\)

    \(I\left( { - a;\,\, - 3a - 1} \right),\,\,A\left( {2;\,\, - 1} \right)\)\( \Rightarrow IA = \sqrt {{{\left( {2 + a} \right)}^2} + 9{a^2}} \)

    Vì đường tròn \(\left( I \right)\) đi qua \(A\left( {2;\,\, - 1} \right)\) nên \(IA = d\left( {I,\,\,{d_2}} \right)\).

    \(\begin{array}{l} \Rightarrow \sqrt {{{\left( {2 + a} \right)}^2} + 9{a^2}}  = \dfrac{{\left| { - 4a - 3} \right|}}{{\sqrt 2 }}\\ \Leftrightarrow {\left( {2 + a} \right)^2} + 9{a^2} = \dfrac{{16{a^2} + 24a + 9}}{2}\\ \Leftrightarrow 4 + 4a + {a^2} + 9{a^2} = \dfrac{{16{a^2} + 24a + 9}}{2}\\ \Leftrightarrow 8 + 8a + 20{a^2} = 16{a^2} + 24a + 9\\ \Leftrightarrow 4{a^2} - 16a - 1 = 0\\ \Leftrightarrow \left[ \begin{array}{l}a = \dfrac{{4 + \sqrt {17} }}{2}\,\,\left( {tm} \right)\\a = \dfrac{{4 - \sqrt {17} }}{2}\,\,\left( {ktm} \right)\end{array} \right. \Rightarrow a = \dfrac{{4 + \sqrt {17} }}{2} \in \left( {4;\,\,5} \right)\end{array}\)

    Chọn B.

    ATNETWORK

Mã câu hỏi: 345842

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON