YOMEDIA
NONE
  • Câu hỏi:

    Số giá trị nguyên của \(m\) nhỏ hơn \(2019\) để hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3x \ge {\left( {x + 1} \right)^2}\\x - m < 0\end{array} \right.\) có nghiệm là 

    • A. \(2019\)    
    • B. \(2017\) 
    • C. \(2018\)   
    • D. \(2016\)  

    Lời giải tham khảo:

    Đáp án đúng: B

    \(\left\{ \begin{array}{l}{x^2} + 3x \ge {\left( {x + 1} \right)^2}\\x - m < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} + 3x \ge {x^2} + 2x + 1\\x < m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\x < m\end{array} \right.\)

    Bất phương trình có nghiệm khi và chỉ khi \(m > 1\).

    Kết hợp với điều kiện \(m < 2019,\,\,m \in \mathbb{Z}\) suy ra \(\left\{ \begin{array}{l}m \in \mathbb{Z}\\1 < m < 2019\end{array} \right.\)\( \Rightarrow m \in \left\{ {2;\,\,3; \ldots ;\,\,2018} \right\}\).

    Vậy có \(2017\) giá trị nguyên của \(m\) thỏa mãn điều kiện đề bài.

    Chọn B.

    ATNETWORK

Mã câu hỏi: 345826

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON