-
Câu hỏi:
Trong không gian với hệ trục tọa độ \(Oxyz\)cho ba điểm \(A(1;2; - 1)\), \(B(2; - 1;3)\),\(C( - 2;3;3)\). Tìm tọa độ điểm\(D\) là chân đường phân giác trong góc \(A\) của tam giác\(ABC\)
- A. D(0;1;3)
- B. D(0;3;1)
- C. D(0; - 3;1)
- D. D(0;3; - 1)
Lời giải tham khảo:
Đáp án đúng: A
Ta có \(AB = \sqrt {26} ,AC = \sqrt {26} \Rightarrow \) tam giác \(ABC\)cân ở \(A\) nên \(D\) là trung điểm \(BC\) \( \Rightarrow D(0;1;3).\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Tìm .
- Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường quanh Ox là:
- Tìm \(I = \int {\cos \left( {4x + 3} \right)\,dx} \).
- Đặt . Khi đó F’(x) là hàm số nào dưới đây ?
- Hàm số nào dưới đây không là nguyên hàm của \(f(x) = \dfrac{{2x\left( {x + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}\) ?
- Tính nguyên hàm của (int {{{left( {5x + 3} ight)}^3},dx} ) ta được:
- Cho \(f(x) \ge g(x),\forall x \in [a;b]\). Hình phẳng S1 giới hạn bởi đường y = f(x), y = 0, x = a, x = b (a
- Diện tích hình phẳng giới hạn bởi các đường : \(y = {x^2}\,,\,y = \dfrac{{{x^2}}}{8},\,\,y = \dfrac{{27}}{x}\) là:
- Khoanh vào phương án đúng.
- Tính tích phân \(\int\limits_a^{\dfrac{\pi }{2} - a} {{\sin }^2}x\,dx;\,\,\dfrac{\pi }{2} > a > 0 \)
- Tích phân \(\int\limits_0^1 {x\sqrt {{x^2} + 1} } dx = \dfrac{{a\sqrt 2 - b}}{3}\) thì a + b bằng :
- Trong các hàm số f(x) dưới đây, hàm số nào thỏa mãn đẳng thức \(\int {f(x).\sin x\,dx = - f(x).\cos x + \int {{\pi ^x}.\cos x\,dx} } \)?
- Chọn câu đúng. Cho F(x) là một nguyên hàm của hàm số (f(x) = {e^x} + 2x) thỏa mãn (F(0) = dfrac{3}{2}). Tìm F(x) ?
- Biết F(x) là nguyên hàm của hàm số \(f(x) = \dfrac{1}{{x - 1}}\,,\,\,F(2) = 1\). Tính F(3).
- Hàm số \(F(x) = 3{x^2} - \dfrac{1}{{\sqrt x }} + \dfrac{1}{{{x^2}}} - 1\) có một nguyên hàm là:
- Diện tích hình phẳng được giới hạn bởi parabol \(y = 2 - {x^2}\) và đường thẳng \(y = - x\) là:
- Kết quả của tích phân \(\int\limits_{ - 1}^0 {\left( {x + 1 + \dfrac{2}{{x - 1}}} \right)\,dx} \) được viết dưới dạng a + bln2. Tính giá trị của a + b.
- Tìm \(I = \int {\sin 5x.\cos x\,dx} \).
- Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {e^x} - {e^{ - x}}\), trục hoành, đường thẳng x= - 1 và đường thẳng x = 1.
- Họ nguyên hàm của hàm số \(f(x) = x\left( {2 + 3{x^2}} \right)\) là:
- Nguyên hàm của hàm số \(\int {\sin \left( {\dfrac{\pi }{3} - 2x} \right)\,dx} \) là:
- Tính nguyên hàm \(\int {\dfrac{{dx}}{{\sqrt x + 1}}} \) ta được :
- Gọi S là hình phẳng giới hạn bởi đồ thị hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) và các trục tọa độ. Khi đó giá trị của S bằng :
- Tất cả các giá trị của tham số m thỏa mãn \(\int\limits_0^m {\left( {2x + 5} \right)\,dx = 6} \).
- Biết \(\int\limits_2^4 {\dfrac{1}{{2x + 1}}\,dx = m\ln 5 + n\ln 3\,\left( {m,n \in R} \right)} \). Tính P = m – n .
- Công thức tính khoảng cách từ điểm \(A\) đến đường thẳng \(d'\) đi qua điểm \(M'\) và có VTCP \(\overrightarrow {u'} \) là:
- Trong không gian \(Oxyz\) cho ba vectơ \(\overrightarrow a = \left( {3; - 2;4} \right),\)\(\mathop b\limits^ \to = \left( {5;1;6} \right)\), \(\mathop c\limits^ \to = \left( { - 3;0;2} \right)\). Tìm vectơ \(\overrightarrow x \) sao cho vectơ \(\overrightarrow x \) đồng thời vuông góc với \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)
- Trong không gian\(Oxyz\), cho 2 điểm \(B(1;2; - 3)\),\(C(7;4; - 2)\). Nếu \(E\) là điểm thỏa mãn đẳng thức \(\overrightarrow {CE} = 2\overrightarrow {EB} \) thì tọa độ điểm \(E\) là
- Trong không gian với hệ trục tọa độ \(Oxyz\), cho ba điểm \(A(1;2; - 1)\), \(B(2; - 1;3)\),\(C( - 2;3;3)\). Điểm\(M\left( {a;b;c} \right)\) là đỉnh thứ tư của hình bình hành \(ABCM\), khi đó \(P = {a^2} + {b^2} - {c^2}\) có giá trị bằng
- Trong không gian với hệ trục tọa độ \(Oxyz\)cho ba điểm \(A(1;2; - 1)\), \(B(2; - 1;3)\),\(C( - 2;3;3)\). Tìm tọa độ điểm\(D\) là chân đường phân giác trong góc \(A\) của tam giác\(ABC\)
- Trong không gian với hệ toạ độ \(Oxyz\), cho các điểm: A(-1,3,5), B(-4,3,2), C(0,2,1). Tìm tọa độ điểm \(I\) tâm đường tròn ngoại tiếp tam giác \(ABC\)
- Trong không gian\(Oxyz\), cho ba vectơ \(\overrightarrow a = \left( { - 1,1,0} \right);\overrightarrow b = (1,1,0);\overrightarrow c = \left( {1,1,1} \right)\). Trong các mệnh đề sau, mệnh đề nào đúng:
- Trong không gian với hệ tọa độ \(Oxyz\), cho tứ diện \(ABCD\), biết \(A(1;0;1)\),\(B( - 1;1;2)\), \(C( - 1;1;0)\), \(D(2; - 1; - 2)\). Độ dài đường cao \(AH\)của tứ diện \(ABCD\) bằng:
- Chọn câu đúng. Cho hình chóp tam giác (S.ABC) với (I) là trọng tâm của đáy (ABC). Đẳng thức nào sau đây là đẳng thức đúng
- Phương trình mặt cầu tâm \(I\left( {2;4;6} \right)\) nào sau đây tiếp xúc với trục Ox:
- Mặt cầu tâm \(I\left( {2;4;6} \right)\) tiếp xúc với trục Oz có phương trình:
- Cho mặt cầu \(\left( S \right)\): \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\). Phương trình mặt cầu nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua mặt phẳng (Oxy):
- Cho mặt cầu \(\left( S \right)\): \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 4\). Phương trình mặt cầu nào sau đây là phương trình mặt cầu đối xứng với mặt cầu (S) qua trục Oz:
- Đường tròn giao tuyến của \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\) khi cắt bởi mặt phẳng (Oxy) có chu vi bằng:
- Trong không gian với hệ toạ độ \(Oxyz\),tọa độ điểm \(M\) nằm trên trục \(Oy\) và cách đều hai mặt phẳng: \(\left( P \right):x + y - z + 1 = 0\) và \(\left( Q \right):x - y + z - 5 = 0\) là: