YOMEDIA
NONE
  • Câu hỏi:

    Tìm tất cả các gía trị thực của tham số \(m\) sao cho phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\) có hai nghiệm dương phân biệt. 

    • A. \(m <  - 4\) hoặc \(1 < m < 5\)         
    • B. \(m <  - 1\) hoặc \( - 4 < m < 5\)      
    • C. \(1 < m < 5\)      
    • D. \( - 4 < m < 5\)  

    Lời giải tham khảo:

    Đáp án đúng: A

    Phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\) có hai nghiệm dương phân biệt khi và chỉ khi

    \(\left\{ \begin{array}{l}a \ne 0\\\Delta  > 0\\{x_1}{x_2} > 0\\{x_1} + {x_2} > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ne 0\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\4{\left( {m + 1} \right)^2} - 4\left( {m - 1} \right)\left( {m + 4} \right) > 0\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\\\dfrac{{m + 4}}{{m - 1}} > 0\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\\\dfrac{{m + 1}}{{m - 1}} > 0\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\)

    Giải \(\left( 1 \right)\): \(m - 1 \ne 0 \Leftrightarrow m \ne 1\)

    Giải \(\left( 2 \right)\):

    \(\begin{array}{l}4{\left( {m + 1} \right)^2} - 4\left( {m - 1} \right)\left( {m + 4} \right) > 0\\ \Leftrightarrow \left( {4{m^2} + 8m + 4} \right) \\- \left( {4m - 4} \right)\left( {m + 4} \right) > 0\\ \Leftrightarrow 4{m^2} + 8m + 4 - 4{m^2} - 16m \\+ 4m + 16 > 0\\ \Leftrightarrow  - 4m + 20 > 0\\ \Leftrightarrow m < 5\end{array}\)

    Giải \(\left( 3 \right)\):

    \(\dfrac{{m + 4}}{{m - 1}} > 0\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m + 4 > 0\\m - 1 > 0\end{array} \right.\\\left\{ \begin{array}{l}m + 4 < 0\\m - 1 < 0\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m >  - 4\\m > 1\end{array} \right.\\\left\{ \begin{array}{l}m <  - 4\\m < 1\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m > 1\\m <  - 4\end{array} \right.\)

    Giải \(\left( 4 \right)\):

    \(\dfrac{{m + 1}}{{m - 1}} > 0\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m + 1 > 0\\m - 1 > 0\end{array} \right.\\\left\{ \begin{array}{l}m + 1 < 0\\m - 1 < 0\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m >  - 1\\m > 1\end{array} \right.\\\left\{ \begin{array}{l}m <  - 1\\m < 1\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m > 1\\m <  - 1\end{array} \right.\)

    Kết hợp cả \(4\) điều kiện ta được \(m <  - 4\) hoặc \(1 < m < 5\).

    Chọn A.

    ATNETWORK

Mã câu hỏi: 350467

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON