-
Câu hỏi:
Số nghiệm nguyên âm của bất phương trình \(\dfrac{{\left| {{x^2} - 8x + 12} \right|}}{{\sqrt {5 - x} }} > \dfrac{{{x^2} - 8x + 12}}{{\sqrt {5 - x} }}\) là
- A. \(3\)
- B. vô số
- C. \(2\)
- D. \(0\)
Lời giải tham khảo:
Đáp án đúng: D
ĐKXĐ: \(5 - x > 0 \Leftrightarrow x < 5\)
\(\dfrac{{\left| {{x^2} - 8x + 12} \right|}}{{\sqrt {5 - x} }} > \dfrac{{{x^2} - 8x + 12}}{{\sqrt {5 - x} }}\)
\( \Leftrightarrow \left| {{x^2} - 8x + 12} \right| > {x^2} - 8x + 12\)
\(\begin{array}{l} \Leftrightarrow {x^2} - 8x + 12 < 0\\ \Leftrightarrow 2 < x < 6\end{array}\)
Kết hợp với ĐKXĐ suy ra bất phương trình đã cho có nghiệm \(x \in \left( {2;\,\,5} \right)\).
Mà \(x \in \mathbb{Z} \Rightarrow x \in \left\{ {3;\,\,4} \right\}\).
Vậy bất phương trình đã cho không có nghiệm nguyên âm.
Chọn D.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Bất phương trình \(ax + b > 0\) vô nghiệm khi:
- Đường thẳng \(\left( d \right)\) có phương trình \(ax + by + c = 0\) với \({a^2} + {b^2} > 0\). Ta xét \(4\) mệnh đề sau:
- Phương trình tham số của đường thẳng đi qua \(M\left( {3;\,\,4} \right)\) và có véc tơ chỉ phương \(\vec u\left( {1;\,\, - 2} \right)\) là
- Cho bảng xét dấu sau. Hàm số có bảng xét dấu như trên là:
- Nếu \(a > b > 0,\,\,c > d > 0\) thì bất đẳng thức nào sau đây sai?
- Tam giác \(ABC\) có \(a = 4,\,\,b = 6,\,\,{m_c} = 4\). Tính độ dài cạnh \(c\).
- Giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = \dfrac{{{x^2} + 4x + 5}}{{{x^2} + 3x + 3}}\) lần lượt là \(M\) và \(m\) thì:
- Cho tam thức \(f\left( x \right) = a{x^2} + bx + c\) với \(a < 0\) và \(\Delta = 0\). Phát biểu nào sau đây đúng?
- Nếu có \(m > 0,\,\,n < 0\) thì bất đẳng thức nào sau đây luôn đúng?
- Góc giữa hai đường thẳng \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 + t\end{array} \right.\) và \(\left\{ \begin{array}{l}x = 1 - 3t\\y = - 2 + t\end{array} \right.\) là:
- Nếu \(0 < a < 1\) thì bất đẳng thức nào sau đây là đúng?
- Tập xác định của hàm số \(y = \sqrt {5 - 4x - {x^2}} \) là
- Cho tam giác \(ABC\) có \({b^2} = {a^2} + {c^2} + ac\). Số đo của góc \(B\) là:
- Tam giác \(ABC\) có \(AB = 12,\,\,AC = 8\), góc \(A\) bằng \({30^0}\). Tính diện tích tam giác đó.
- Số nghiệm nguyên của bất phương trình \(\dfrac{{{x^4} - {x^2}}}{{{x^2} + 5x + 6}} \le 0\)?
- Miền nghiệm của bất phương trình nào sau đây được biểu diễn bởi nửa mặt phẳng không bị gạch trong hình vẽ bên (kể cả bờ là đường thẳng)?
- Đường thẳng đi qua hai điểm \(A\left( {3;\,\,4} \right),\,\,B\left( { - 1;\,\,2} \right)\) là:
- Tìm tham số \(m\) để hàm số \(y = \sqrt {\left( {m + 1} \right){x^2} - 2\left( {m + 1} \right) + 4} \) có tập xác định là \(D = \mathbb{R}\)?
- Cho hệ bất phương trình \(\left\{ \begin{array}{l}3x - 6 < 0\\mx + m - 1 \ge 0\end{array} \right.\). Giá trị của \(m\) để hệ bất phương trình vô nghiệm là:
- Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 3y - 1 > 0\\5x - y + 4 < 0\end{array} \right.\)?
- Tổng các nghiệm của bất phương trình \(x\left( {3 - x} \right) \ge x\left( {7 - x} \right) - 6\left( {x - 1} \right)\) trên đoạn \(\left[ { - 6;\,\,6} \right]\).
- Phương trình \(2m{x^2} - 2mx + 3 = 0\) vô nghiệm khi và chỉ khi
- Tập nghiệm của bất phương trình \(\dfrac{{{x^2} + 2x - 8}}{{\left| {x + 1} \right|}} < 0\) là:
- Cho tam giác \(ABC\) có \(A\left( { - 1;\,\,6} \right),\,\,B\left( {0;\,\,2} \right),\,\,C\left( {1;\,\,5} \right)\). Gọi \(\alpha \) là góc giữa hai đường cao \(AH\) và \(BK\), khi đó:
- Các cặp bất phương trình nào sau đây không tương đương?
- Cho hai điểm \(A\left( {1;\,\, - 2} \right),\,\,B\left( {3;\,\,6} \right)\). Phương trình đường trung trực của đoạn thẳng \(AB\) là:
- Số nghiệm nguyên âm của bất phương trình \(\dfrac{{\left| {{x^2} - 8x + 12} \right|}}{{\sqrt {5 - x} }} > \dfrac{{{x^2} - 8x + 12}}{{\sqrt {5 - x} }}\) là
- Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \(\left( {{m^2} - 4} \right){x^2} + \left( {m - 2} \right)x + 1 \le 0\) có nghiệm với mọi \(x \in R\).
- Tìm tất cả các gía trị thực của tham số \(m\) sao cho phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\) có hai nghiệm dương phân biệt.
- Tập hợp các giá trị của \(m\) để \(3\) đường thẳng sau đồng quy: \(2x - y + 1 = 0\), \(x - y + 2 = 0\), \(\left( {1 + {m^2}} \right)x - y + 2m - 1 = 0\) là
- Tính giá trị biểu thức \(P = \dfrac{{\left( {\cot {{44}^0} + \tan {{226}^0}} \right)\cos {{406}^0}}}{{\cos {{316}^0}}} - \cot {72^0}\cot {18^0}\).
- Giải bất phương trình \(2x\left( {x - 1} \right) + 1 > \sqrt {{x^2} - x + 1} \) được tập nghiệm \(S = \left( { - \infty ;\,\,a} \right) \cup \left( {b;\,\, + \infty } \right)\,\,\left( {a < b} \right)\). Tích \(P = ab\) bằng
- Cho đường thẳng \(\left( C \right):\,\,{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\) và đường thẳng \(d:3x - y + 2 = 0\). Viết phương trình đường thẳng \(d'\) song song với đường thẳng \(d\) và chắn trên \(\left( C \right)\) một dây cung có độ dài lớn nhất.
- Trong mặt phẳng với hệ trục tọa độ \(Oxy\), đường thẳng đi qua \(A\left( {0;\,\,1} \right)\) tạo với đường thẳng \(d:3x - 2y - 5 = 0\) một góc bằng \({45^0}\) có hệ số góc \(k\) là
- Giá trị lớn nhất của biểu thức \(P = {\sin ^6}\alpha + {\cos ^6}\alpha + m\sin 2\alpha \), \(\left| m \right| < \dfrac{3}{2}\) bằng
- Cho hai số thực dương \(x,\,\,y\) thỏa mãn \(x + y = 1\). Giá trị nhỏ nhất của \(S = \dfrac{1}{x} + \dfrac{4}{y}\) là
- Số nghiệm nguyên của bất phương trình \({x^4} - 1 > {x^2} + 2x\) thỏa mãn điều kiện \(\left| x \right| \le 2019\) là
- Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hình vuông \(ABCD\). Gọi \(M,\,\,N\) lần lượt là trung điểm của các cạnh \(AB\) và \(CD\). Biết rằng \(M\left( { - \dfrac{1}{2};\,\,2} \right)\) và đường thẳng \(BN\) có phương trình \(2x + 9y - 34 = 0\). Khi đó, tọa độ \(B\left( {a;\,\,b} \right),\,\,\left( {a < 0} \right)\). Tính \({a^2} + {b^2}\).
- Tìm tất cả các giá trị của tham số \(m\) để bất phương trình \(mx + 4 > 0\) nghiệm đúng với mọi \(x\) thỏa mãn \(\left| x \right| < 8\).
- Cho hai số thực \(x,\,\,y\) thỏa mãn \(x{}^2 + {y^2} = x + y + xy\). Đặt \(S = x + y\). Khẳng định nào sau đây là đúng?