YOMEDIA
NONE
  • Câu hỏi:

    Góc giữa hai đường thẳng \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 2 + t\end{array} \right.\) và \(\left\{ \begin{array}{l}x = 1 - 3t\\y =  - 2 + t\end{array} \right.\) là: 

    • A. \({45^0}\)    
    • B. \({30^0}\) 
    • C. \({135^0}\)  
    • D. \({23^0}13'\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    \(\left( {{d_1}} \right):\,\,\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 2 + t\end{array} \right. \Rightarrow {\vec u_{{d_1}}} = \left( {2;\,\,1} \right)\)

    \(\left( {{d_2}} \right):\,\,\left\{ \begin{array}{l}x = 1 - 3t\\y =  - 2 + t\end{array} \right. \Rightarrow {\vec u_{{d_2}}} = \left( { - 3;\,\,1} \right)\)

    \({\rm{cos}}\left( {{d_1},{d_2}} \right) = {\rm{cos}}\left( {{{\vec u}_{{d_1}}},{{\vec u}_{{d_2}}}} \right)\)\( = \dfrac{{\left| {{{\vec u}_{{d_1}}}.{{\vec u}_{{d_2}}}} \right|}}{{\left| {{{\vec u}_{{d_1}}}} \right|.\left| {{{\vec u}_{{d_2}}}} \right|}}\)\( = \dfrac{{\left| {2.\left( { - 3} \right) + 1.1} \right|}}{{\sqrt {{2^2} + {1^2}} .\sqrt {{{\left( { - 3} \right)}^2} + {1^2}} }}\)\( = \dfrac{5}{{\sqrt 5 .\sqrt {10} }} = \dfrac{1}{{\sqrt 2 }}\)

    \( \Rightarrow \left( {{d_1},\,\,{d_2}} \right) = {45^0}\)

    Vậy góc giữa hai đường thẳng trên bằng \({45^0}\).

    Chọn A.

    ATNETWORK

Mã câu hỏi: 350415

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON