YOMEDIA
NONE
  • Câu hỏi:

    Tại mặt chất lỏng, hai nguồn S1, S2 cách nhau 13 cm dao động theo phương thẳng đứng với phương trình u1 = u2 = Acos(40πt) (cm)(t tính bằng s). Tốc độ truyền sóng trên mặt chất lỏng là 80 cm/s. Ở mặt chất lỏng, gọi ∆ là đường trung trực của S1S2. M là một điểm không nằm trên S1S2 và không thuộc ∆, sao cho phần tử chất lỏng tại M dao động với biên độ cực đại và cùng pha với hai nguồn. Khoảng cách ngắn nhất từ M đến ∆ là

    • A. 2,00 cm.
    • B. 2,46 cm.
    • C. 3,07 cm.
    • D. 4,92 cm.

    Đáp án đúng: C

    + Áp dụng kết quả bài toán dao động cùng pha và cực đại

    \(\left\{ \begin{array}{l}
    {d_2} - {d_1} = k\lambda \\
    {d_1} + {d_2} = n\lambda 
    \end{array} \right.\)  với n, k cùng chẳn hoặc cùng lẻ

    + Để M gần ∆ nhất thì k=1 , n khi đó có thể nhận các giá trị 1, 2, 3…..thõa mãn bất đẳng thức tam giác

    \({d_1} + {d_2} > 13 \Rightarrow n > \frac{{13}}{\lambda } = 3,25 \Rightarrow {n_{\min }} = 5\)

    + Ta có : 

    \(\left\{ \begin{array}{l}
    {d_2} - {d_1} = 4\\
    {d_1} + {d_2} = 20
    \end{array} \right. \Rightarrow \left\{ \begin{array}{l}
    {d_2} = 12cm\\
    {d_1} = 8cm
    \end{array} \right.\)

    Từ hình vẽ :

    \(\left\{ \begin{array}{l}
    {8^2} = {x^2} + {h^2}\\
    {12^2} = {\left( {13 - x} \right)^2} + {h^2}
    \end{array} \right. \Rightarrow x = 3,42cm\)

    Vậy khoảng cách giữa M và ∆ khi đó là \(\frac{{13}}{2} - 3,42 \approx 3,07cm\)

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ GIAO THOA SÓNG

AANETWORK
 

 

YOMEDIA
NONE
ON