YOMEDIA
NONE
  • Câu hỏi:

    Một vật thực hiện đồng thời hai dao động thành phần cùng phương có phương trình \({{x}_{1}}=6cos\left( 20t-\frac{\pi }{6} \right)cm\) và \({{x}_{2}}={{A}_{2}}cos\left( 20t+\frac{\pi }{2} \right)cm\). Biết dao động tổng hợp có vận tốc cực đại \({{v}_{\max }}=1,2\sqrt{3}m/s\). Tìm biên độ \({{A}_{2}}\)

    • A. \(12cm\)
    • B. \(-6cm\)
    • C. \(6cm\)
    • D. \(20cm\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Ta có:

    \({{v}_{\max }}=\omega A\) \(\Rightarrow A=\frac{{{v}_{\max }}}{\omega }=\frac{1,2\sqrt{3}}{20}=0,06\sqrt{3}m=6\sqrt{3}cm\)

    \({{A}^{2}}=A_{1}^{2}+A_{2}^{2}+2{{A}_{1}}{{A}_{2}}\cos \Delta \varphi \)

    \(\Leftrightarrow {{\left( 6\sqrt{3} \right)}^{2}}={{6}^{2}}+A_{2}^{2}+2.6.{{A}_{2}}.\cos \left( -\frac{\pi }{6}-\frac{\pi }{2} \right)\)

    Lại có biên độ của dao động tổng hợp được xác định bởi công thức:

    \({{A}^{2}}=A_{1}^{2}+A_{2}^{2}+2{{A}_{1}}{{A}_{2}}\cos \Delta \varphi \)

    \(\Leftrightarrow {{\left( 6\sqrt{3} \right)}^{2}}={{6}^{2}}+A_{2}^{2}+2.6.{{A}_{2}}.\cos \left( -\frac{\pi }{6}-\frac{\pi }{2} \right)\)

    \(\Leftrightarrow 108=36+A_{2}^{2}-2{{A}_{2}}\Leftrightarrow A_{2}^{2}-6{{A}_{2}}-72=0\)

    \(\Rightarrow {{A}_{2}}=6cm\)

    ADSENSE

Mã câu hỏi: 274249

Loại bài: Bài tập

Chủ đề :

Môn học: Vật lý

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
AANETWORK
OFF