YOMEDIA
NONE
  • Câu hỏi:

    Gọi \(n\) là số các giá trị của tham số m để bất phương trình \(\left( {2m - 4} \right)\left( {{x^3} + 2{x^2}} \right) + \left( {{m^2} - 3m + 2} \right)\left( {{x^2} + 2x} \right) - \left( {{m^3} - {m^2} - 2m} \right)\left( {x + 2} \right) < 0\) vô nghiệm. Giá trị của \(n\) bằng:

    • A. \(n = 5\) 
    • B. \(n = 1\)
    • C. \(n = 4\) 
    • D. \(n = 2\)

    Lời giải tham khảo:

    Đáp án đúng: B

    \(\begin{array}{l}\left( {2m - 4} \right)\left( {{x^3} + 2{x^2}} \right) + \left( {{m^2} - 3m + 2} \right)\left( {{x^2} + 2x} \right) - \left( {{m^3} - {m^2} - 2m} \right)\left( {x + 2} \right) < 0\\ \Leftrightarrow 2{x^2}\left( {m - 2} \right)\left( {x + 2} \right) + x\left( {m - 1} \right)\left( {m - 2} \right)\left( {x + 2} \right) - m\left( {m + 1} \right)\left( {m - 2} \right)\left( {x + 2} \right) < 0\\ \Leftrightarrow \left( {m - 2} \right)\left( {x + 2} \right)\left[ {2{x^2} + \left( {m - 1} \right)x - m\left( {m + 1} \right)} \right] < 0\\ \Leftrightarrow \left( {m - 2} \right)\left( {x + 2} \right)\left( {x + m} \right)\left( {2x - m - 1} \right) < 0\,\,\left( * \right)\end{array}\)

    TH1: \(m = 2 \Rightarrow 0 < 0 \Rightarrow \) Bất phương trình vô nghiệm \( \Rightarrow m = 2\,\,tm\).

    TH2: \(m \ne 2\), vế trái (*) \(f\left( x \right) = \left( {m - 2} \right)\left( {x + 2} \right)\left( {x + m} \right)\left( {2x - m - 1} \right)\) là đa thức bậc ba, do đó luôn tồn tại \({x_0} \in \mathbb{R}\) để \(f\left( {{x_0}} \right) < 0 \Rightarrow \) Bất phương trình luôn có nghiệm \(\forall m \ne 2\).

    Vậy tồn tại duy nhất \(m = 2\) để bất phương trình đã cho vô nghiệm.

    Chọn B.

    ATNETWORK

Mã câu hỏi: 384113

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON