YOMEDIA
NONE
  • Câu hỏi:

    Cho lăng trụ tam giác \(ABC.{A}'{B}'{C}'\) có đáy là tam giác vuông tại \(A\), \(AB=2;AC=\sqrt{3}\). Góc \(\widehat{CA{A}'}={{90}^{0}},\widehat{BA{A}'}={{120}^{0}}\). Gọi \(M\) là trung điểm cạnh \(B{B}'\). Biết \(CM\) vuông góc với \({A}'B\), tính thể khối lăng trụ đã cho.

    • A. \(V=\frac{1+\sqrt{33}}{8}\).        
    • B. \(V=\frac{1+\sqrt{33}}{4}\).        
    • C. \(V=\frac{3\left( 1+\sqrt{33} \right)}{8}\).    
    • D. \(V=\frac{3\left( 1+\sqrt{33} \right)}{4}\).

    Lời giải tham khảo:

    Đáp án đúng: D

    Chọn D.

    Ta có:

    \(\left\{ \begin{align} & CA\bot AB \\ & CA\bot AA' \\ \end{align} \right.\Rightarrow CA\bot \left( ABB'A' \right)\)

    Lại có:

    \(\left\{ \begin{align} & A'B\bot CM \\ & A'M\bot CA\left( V\grave{i}\text{ }CA\bot \left( ABB'A' \right) \right) \\ \end{align} \right.\Rightarrow A'B\bot \left( ACM \right)\) \(\Rightarrow A'B\bot AM\)

    * Đặt \(AA'=2x\Rightarrow BM=x\)

    \(\Rightarrow \) Xét \(\Delta ABM:AM=\sqrt{{{x}^{2}}+{{2}^{2}}-2.x.2.\cos 60}=\sqrt{{{x}^{2}}-2x+4}\)

    \(\Rightarrow AO=\frac{2}{3}.AM=\sqrt{{{x}^{2}}-2x+4}.\frac{2}{3}\)\( \Rightarrow BO=\sqrt{{{2}^{2}}-\frac{4}{9}\left( {{x}^{2}}-2x+4 \right)}\)

    \(\left. \begin{align} & {{S}_{\Delta ABA'}}=\frac{1}{2}.2.2x.\sin 120=x\sqrt{3} \\ & {{S}_{\Delta ABA'}}=\frac{1}{2}.AO.A'B=\frac{1}{2}.\left( \frac{2}{3}\sqrt{{{x}^{2}}-2x+4} \right).3\sqrt{{{2}^{2}}-\frac{4}{9}\left( {{x}^{2}}-2x+4 \right)} \\ \end{align} \right\}\Rightarrow x=\frac{\sqrt{33}+1}{4}\)

    \(\Rightarrow {{V}_{LT}}=3{{V}_{CABA'}}=\frac{3\left( \sqrt{33}+1 \right)}{4}\)

    ATNETWORK

Mã câu hỏi: 443081

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON