-
Câu hỏi:
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\,\,\,\,\left( {a > 0} \right).\) Các điểm \(M,\,\,N,\,\,P\) lần lượt là trung điểm của \(SA,\,\,SB,\,\,SC\,.\) Mặt phẳng \(\left( {MNP} \right)\) cắt hình chóp theo một thiết diện có diện tích bằng:
- A. \({a^2}.\)
- B. \(\frac{{{a^2}}}{2}.\)
- C. \(\frac{{{a^2}}}{4}.\)
- D. \(\frac{{{a^2}}}{{16}}.\)
Lời giải tham khảo:
Đáp án đúng: C
Gọi \(Q\) là trung điểm của \(SD\,.\)
Tam giác \(SAD\)có \(M,\,\,Q\) lần lượt là trung điểm của \(SA,\,\,SD\) suy ra \(MQ\)//\(AD\,.\)
Tam giác \(SBC\) có \(N,\,\,P\) lần lượt là trung điểm của \(SB,\,\,SC\) suy ra \(NP\)//\(BC\,.\)
Mặt khác \(AD\)//\(BC\) suy ra \(MQ\)//\(NP\) và \(MQ = NP\,\, \Rightarrow \,\,MNPQ\) là hình vuông.
Khi đó \(M,\,\,N,\,\,P,\,\,Q\) đồng phẳng \( \Rightarrow \,\,\left( {MNP} \right)\) cắt \(SD\) tại \(Q\,\) và \(MNPQ\) là thiết diện của hình chóp \(S.ABCD\) với \(mp\,\,\left( {MNP} \right).\)
Vậy diện tích hình vuông \(MNPQ\) là \({S_{MNPQ}} = \frac{{{S_{ABCD}}}}{4} = \frac{{{a^2}}}{4}.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Qua 3 điểm phân biệt bất kì có duy nhất một mặt phẳng
- Cho tứ diện ABCD. Gọi G là trọng tâm của tam giácBCD.
- Cho bốn điểm A,B,C,D không đồng phẳng. Gọi M, N lần lượt là trung điểm của AC và BC
- Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a
- Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm của AB và CD
- Cho hình tứ diện ABCD, phát biểu nào sau đây là đúng?
- Cho hình chóp S.ABCD, O là giao điểm của AC và BD, phát biểu nào sau đây là đúng?
- Tìm phát biểu đúng biết hình chóp O.ABC, A’ là trung điểm của OA; các điểm B’, C’ tương ứng thuộc các cạnh OB, OC và không phải là trung điểm của các cạnh này
- Cho hình chóp O.
- Cho hình chóp S.ABCD, M là điểm nằm trong tam giác SAD. Phát biểu nào sau đây là đúng?