YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy là hình thoi, tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(AC = 2a,{\mkern 1mu} {\mkern 1mu} BD = 4a\). Tính theo \(a\) khoảng cách giữa hai đường thẳng AD và SC. 

    • A. \(\dfrac{{a\sqrt {15} }}{2}\).    
    • B. \(\dfrac{{2a\sqrt 5 }}{5}\).   
    • C. \(\dfrac{{2{a^3}\sqrt {15} }}{3}\).       
    • D. \(\dfrac{{4a\sqrt {1365} }}{{91}}\).  

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi \(I\) là trung điểm của AB \( \Rightarrow SI \bot AB\) (do tam giác SAB đều).

    Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {SAB} \right) \bot \left( {ABCD} \right)}\\{\left( {SAB} \right) \cap \left( {ABCD} \right) = AB}\\{\left( {SAB} \right) \supset SI \bot AB}\end{array}} \right.\) \( \Rightarrow SI \bot \left( {ABCD} \right)\).

    +) Ta thấy \(AD\parallel BC{\mkern 1mu} {\mkern 1mu} \left( {gt} \right) \Rightarrow d\left( {AD;SC} \right)\)

    \( = d\left( {AD;\left( {SBC} \right)} \right) = d\left( {A;\left( {SBC} \right)} \right)\).

    Mà \(AI \cap \left( {SBC} \right) = B \Rightarrow \dfrac{{d\left( {A;\left( {SBC} \right)} \right)}}{{d\left( {I;\left( {SBC} \right)} \right)}} = \dfrac{{AB}}{{IB}} = 2\).

    \( \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = 2d\left( {I;\left( {SBC} \right)} \right)\)

    \( \Rightarrow d\left( {AD;SC} \right) = 2d\left( {I;\left( {SBC} \right)} \right)\).

    Trong \(\left( {ABCD} \right)\), kẻ \(IH \bot BC{\mkern 1mu} {\mkern 1mu} \left( {H \in BC} \right)\). Trong \(\left( {SIH} \right)\) kẻ \(IK \bot SH{\mkern 1mu} {\mkern 1mu} \left( {K \in SH} \right)\) ta có:

    \(\left\{ {\begin{array}{*{20}{l}}{BC \bot IH}\\{BC \bot SI{\mkern 1mu} {\mkern 1mu} \left( {SI \bot \left( {ABCD} \right)} \right)}\end{array}} \right.\) \( \Rightarrow BC \bot \left( {SIH} \right) \Rightarrow BC \bot IK\).

    Ta có: \(\left\{ {\begin{array}{*{20}{l}}{IK \bot SH}\\{IK \bot BC}\end{array}} \right. \Rightarrow IK \bot \left( {SBC} \right)\)\( \Rightarrow d\left( {I;\left( {SBC} \right)} \right) = IK\).

    Gọi \(O = AC \cap BD\) ta có \(AC \bot BD\) tại \(O\) và \(O\) là trung điểm của \(AC,{\mkern 1mu} {\mkern 1mu} BD\).

    +) Tam giác AOB vuông tại \(O\) có \(AO = \dfrac{{AC}}{2} = a;{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} BO = \dfrac{{BD}}{2} = 2a\).

    \( \Rightarrow AB = \sqrt {O{A^2} + O{B^2}} \) \( = \sqrt {{a^2} + {{\left( {2a} \right)}^2}} {\rm{\;}} = a\sqrt 5 {\rm{\;}} = BC\) (Định lí Pytago).

    Ta có \({S_{ABCD}} = \dfrac{1}{2}AC.BD = \dfrac{1}{2}.2a.4a = 4{a^2}\).

    \( \Rightarrow {S_{ABC}} = \dfrac{1}{2}{S_{ABCD}} = 2{a^2}\)\( \Rightarrow {S_{IBC}} = \dfrac{1}{2}{S_{ABC}} = {a^2}\).

    Mặt khác \({S_{IBC}} = \dfrac{1}{2}IH.BC \Rightarrow IH = \dfrac{{2{S_{IBC}}}}{{BC}}\)\( = \dfrac{{2{a^2}}}{{a\sqrt 5 }} = \dfrac{{2a\sqrt 5 }}{5}\). 

    +) Tam giác SAB đều cạnh \(a\sqrt 5 \)\( \Rightarrow SI = \dfrac{{\sqrt 3 }}{2}.a\sqrt 5 {\rm{\;}} = \dfrac{{a\sqrt {15} }}{2}\).

    +) Áp dụng hệ thức lượng trong tam giác vuông SIH ta có:

    \(IK = \dfrac{{SI.IH}}{{\sqrt {S{I^2} + I{H^2}} }} = \dfrac{{\dfrac{{a\sqrt {15} }}{2}.\dfrac{{2a\sqrt 5 }}{5}}}{{\sqrt {{{\left( {\dfrac{{a\sqrt {15} }}{2}} \right)}^2} + {{\left( {\dfrac{{2a\sqrt 5 }}{5}} \right)}^2}} }}\)\( = \dfrac{{2a\sqrt {1365} }}{{91}}\).

    Vậy \(d\left( {AD;SC} \right) = 2IK = \dfrac{{4a\sqrt {1365} }}{{91}}\).

    Chọn D.

    ATNETWORK

Mã câu hỏi: 349373

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON