YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = \frac{1}{4}{x^4} - \frac{7}{2}{x^2}\) có đồ thị (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại hai điểm phân biệt \(M\left( {{x_1};{y_1}} \right),N\left( {{x_2};{y_2}} \right)\) (M, N khác A) thỏa mãn \({y_1} - {y_2} = 6\left( {{x_1} - {x_2}} \right)\) ? 

    • A. 1
    • B. 2
    • C. 0
    • D. 3

    Lời giải tham khảo:

    Đáp án đúng: B

    Gọi \(A\left( {{x_0};{y_0}} \right)\), ta có: \({y_1} - {y_2} = 6\left( {{x_1} - {x_2}} \right) \Rightarrow \frac{{{y_1} - {y_2}}}{{{x_1} - {x_2}}} = 6\)  chính là hệ số góc của tiếp tuyến tại \(A\)

    Suy ra \(f'\left( {{x_0}} \right) = x_0^3 - 7{x_0} = 6 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3\\{x_0} =  - 1\\{x_0} =  - 2\end{array} \right.\)

    Ta được các tiếp tuyến \(y = 6x - \frac{{117}}{4},y = 6x + \frac{{11}}{4},y = 6x + 2\)

    Xét phương trình hoành độ giao điểm của đồ thị hàm số đã cho với đường thẳng \(y = 6x + m\) là

    \(\frac{1}{4}{x^4} - \frac{7}{2}{x^2} = 6x + m \Leftrightarrow m = \frac{1}{4}{x^4} - \frac{7}{2}{x^2} - 6x\,\,\,\left( * \right)\)

    Xét \(g\left( x \right) = \frac{1}{4}{x^4} - \frac{7}{2}{x^2} - 6x\) có \(g'\left( x \right) = {x^3} - 7x - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x =  - 1\\x =  - 2\end{array} \right.\)

    Bảng biến thiên:

    Để phương trình \(\left( * \right)\) có ba nghiệm thì \(m = \frac{{11}}{4}\) và \(m = 2\) ứng với \({x_0} =  - 1\) và \({x_0} =  - 2\)

    Vậy có hai điểm \(A\) thỏa mãn yêu cầu đề bài.

    Chọn B.

    ATNETWORK

Mã câu hỏi: 429849

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON