YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(f\left( x \right)\) đồng biến và có đạo hàm cấp 2 trên đoạn \(\left[ {0;2} \right]\) và thỏa mãn \(2{\left[ {f\left( x \right)} \right]^2} - f\left( x \right)f''\left( x \right) + {\left[ {f'\left( x \right)} \right]^2} = 0\) với \(\forall x \in \left[ {0;2} \right]\). Biết \(f\left( 0 \right) = 1,f\left( 2 \right) = {e^6}\), tính tích phân \(I = \int\limits_{ - 2}^0 {\left( {2{\rm{x}} + 1} \right)f\left( x \right)d{\rm{x}}} \) bằng?

    • A. \(1 + e\)
    • B. \(1 - {e^2}\)
    • C. \(1 - e\)
    • D. \(1 - {e^{ - 1}}\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Giả sử \(f\left( x \right) = {e^{a{x^2} + bx + c}}\)

    Ta có

    \(\begin{array}{l} = {\left( {{e^{a{x^2} + bx + c}}} \right)^2}\left[ {2 - 2a} \right] = 0\\ \Rightarrow a = 1\end{array}\)

    Do đó hàm số có dạng \(f\left( x \right) = {e^{{x^2} + bx + c}}\)

    Mà \(\left\{ \begin{array}{l}f\left( 0 \right) = {e^c} = 1 \Rightarrow c = 0\\f\left( 2 \right) = {e^{4 + 2b + c}} = {e^6} \Rightarrow b = 1\end{array} \right.\)

    Nên \(f\left( x \right) = {e^{{x^2} + x}}\)

    Khi đó \[I = \int\limits_{ - 2}^0 {\left( {2x + 1} \right)f\left( x \right)dx} = \int\limits_{ - 2}^0 {\left( {2x + 1} \right){e^{{x^2} + x}}dx} = 1 - {e^2}\]

    Chọn B.

    ATNETWORK

Mã câu hỏi: 468317

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON