YOMEDIA
  • Câu hỏi:

    Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng. Gọi \(O,\,\,{O_1}\) lần lượt là tâm của \(ABCD,\,\,ABEF\,.\) \(M\) là trung điểm của \(CD\,.\) Khẳng định nào sau đây sai? 

     

    • A. \(O{O_1}\)//\(\left( {BEC} \right).\)
    • B. \(O{O_1}\)//\(\left( {AFD} \right).\)
    • C. \(O{O_1}\)//\(\left( {EFM} \right).\)
    • D. \(M{O_1}\) cắt \(\left( {BEC} \right).\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Xét tam giác \(ACE\) có \(O,\,\,{O_1}\) lần lượt là trung điểm của \(AC,\,\,AE\,.\)

    Suy ra \(O{O_1}\) là đường trung bình trong tam giác \(ACE\) \( \Rightarrow \,\,O{O_1}\)//\(EC\,.\)

    Tương tự, \(O{O_1}\) là đường trung bình của tam giác \(BFD\) nên \(O{O_1}\)//\(FD\,.\)

    Vậy \(O{O_1}\)//\(\left( {BEC} \right)\), \(O{O_1}\)//\(\left( {AFD} \right)\) và \(O{O_1}\)//\(\left( {EFC} \right)\). Chú ý rằng: \(\left( {EFC} \right) = \left( {EFM} \right)\,.\)

    ADMICRO

Mã câu hỏi: 15807

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

 
 

CÂU HỎI KHÁC

 

YOMEDIA