-
Câu hỏi:
Cho hai đường thẳng d1: y = 3x – 1 và \({d_2}:\left\{ \begin{array}{l}
x = 2 - t\\
y = 5 + 2t
\end{array} \right.\)Góc giữa hai đường thẳng là:
- A. α = 30o
- B. α=45o
- C. α=60o
- D. α=90o
Lời giải tham khảo:
Đáp án đúng: B
Hai đường thẳng lần lượt có các vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1;3} \right)\) và \(\overrightarrow {{u_2}} = \left( { - 1;2} \right)\) nên ta có
\({\rm{cos}}\left( {{d_1},{d_2}} \right) = \left| {{\rm{cos}}\left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {1.\left( { - 1} \right) + 3.2} \right|}}{{\sqrt {{1^2} + {3^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {2^2}} }} = \frac{1}{{\sqrt 2 }}\)
Do đó góc giữa hai đường thẳng là α=45o
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho đường thẳng Δ có một vectơ chỉ phương là \(\overrightarrow u = \left( { - 3;5} \right)\).
- Phương trình tham số của đường thẳng Δ đi qua điểm M(2; 3) và có hệ số góc k = 4 là:
- Cho hai đường thẳng d1: y = 3x – 1 và \({d_2}:\left\{ \begin{array}{l}x = 2 - t\\y = 5 + 2t\end{array} \right.
- Cho điểm A(-2; 1) và hai đường thẳng d1: 3x – 4y + 2 = 0 và d2: mx + 3y – 3 = 0.
- Cho tam giác ABC với A(-2; 3), B(1; 4), C(5; -2). Phương trình đườgn trung tuyến AM của tam giác là:
- Cho tam giác ABC có phương trình các cạnh AB: 3x – y + 4 = 0, AC: x + 2y – 4 = 0, BC: 2x + 3y – 2 = 0.
- Có bao nhiêu vectơ pháp tuyến của một đường thẳng?
- Phương trình tham số của đường thẳng Δ đi qua điểm M1(3;4) và vuông góc với đường thẳng 2x – y + 3 = 0 là:
- Cho đường thẳng Δ có phương trình tham số là\(\left\{ \begin{array}{l}x = - 1 + 4t\\y = 3 - 2t\end{array} \right.
- Cho đường thẳng Δ có phương trình tổng quát là 2x – y – 2 = 0.