-
Câu hỏi:
Cho đường thẳng Δ có một vectơ chỉ phương là \(\overrightarrow u = \left( { - 3;5} \right)\). Vectơ nào dưới đây không phải là VTCP của Δ?
- A. \(\overrightarrow u_1 = \left( { 3;-5} \right)\)
- B. \(\overrightarrow u_2 = \left( { -6;10} \right)\)
- C. \(\overrightarrow u_3 = \left( { 1;5/3} \right)\)
- D. \(\overrightarrow u_4 = \left( { 5;3} \right)\)
Lời giải tham khảo:
Đáp án đúng: D
Các vectơ khác vectơ – không, cùng phương (tọa độ tỉ lệ) với \(\overrightarrow u \) thì đều là VTCP của đường thẳng Δ. Đối chiếu lại các đáp số thì vectơ ở phương án D không phải là VTCP.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho đường thẳng Δ có một vectơ chỉ phương là \(\overrightarrow u = \left( { - 3;5} \right)\).
- Phương trình tham số của đường thẳng Δ đi qua điểm M(2; 3) và có hệ số góc k = 4 là:
- Cho hai đường thẳng d1: y = 3x – 1 và \({d_2}:\left\{ \begin{array}{l}x = 2 - t\\y = 5 + 2t\end{array} \right.
- Cho điểm A(-2; 1) và hai đường thẳng d1: 3x – 4y + 2 = 0 và d2: mx + 3y – 3 = 0.
- Cho tam giác ABC với A(-2; 3), B(1; 4), C(5; -2). Phương trình đườgn trung tuyến AM của tam giác là:
- Cho tam giác ABC có phương trình các cạnh AB: 3x – y + 4 = 0, AC: x + 2y – 4 = 0, BC: 2x + 3y – 2 = 0.
- Có bao nhiêu vectơ pháp tuyến của một đường thẳng?
- Phương trình tham số của đường thẳng Δ đi qua điểm M1(3;4) và vuông góc với đường thẳng 2x – y + 3 = 0 là:
- Cho đường thẳng Δ có phương trình tham số là\(\left\{ \begin{array}{l}x = - 1 + 4t\\y = 3 - 2t\end{array} \right.
- Cho đường thẳng Δ có phương trình tổng quát là 2x – y – 2 = 0.