YOMEDIA

Chuyên đề Các trường hợp đồng dạng của tam giác Toán 8

Tải về
 
NONE

Để giúp các em học sinh có thêm nhiều tài liệu ôn luyện kiến thức và kĩ năng giải bài tập, HOC247 xin gửi đến Chuyên đề Các trường hợp đồng dạng của tam giác Toán 8. Mời các em cùng tham khảo

ATNETWORK

Chuyên đề

CÁC TRƯỜNG HỢP ĐỒNG DẠNG CỦA TAM GIÁC

I. Kiến thức cần nhớ

1. Trường hợp đồng dạng thứ nhất: Góc – Góc

a) Định nghĩa

Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

b) Ví dụ áp dụng

Ví dụ: Cho tam giác ABC và các đường cao BH, CK. Chứng minh Δ ABH ∼ Δ ACK.

Hướng dẫn:

Xét Δ ABH và Δ ACK có

⇒ Δ ABH ∼ Δ ACK (g - g)

2. Trường hợp đồng dạng thứ hai: Cạnh – Cạnh – Cạnh

a) Định nghĩa

Nếu ba cạnh của tam giác này tỉ lệ với ba cạnh của tam giác kia thì hai tam giác đó đồng dạng.

Tổng quát: Δ ABC,Δ A'B'C' có A'B'/AB = A'C'/AC = B'C'/BC ⇒ Δ ABC ∼ Δ A'B'C'

b) Ví dụ áp dụng

Ví dụ: Cho Δ ABC,Δ A'B'C' có độ dài các cạnh như hình vẽ. Chứng minh Δ ABC ∼ Δ A'B'C'

Hướng dẫn:

Xét Δ ABC,Δ A'B'C' có A'B'/AB = A'C'/AC = B'C'/BC = 2/4 = 2,5/5 = 3/6 = 1/2.

⇒ Δ ABC ∼ Δ A'B'C' (c - c - c)

3. Trường hợp đồng dạng thứ ba: Cạnh – Góc – Cạnh

a) Định nghĩa

Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng

Tổng quát: Δ ABC,Δ A'B'C' có A'B'/AB = A'C'/AC và Aˆ = A'ˆ

⇒ Δ ABC ∼ Δ A'B'C' (c - g - c)

b) Ví dụ áp dụng

Ví dụ: Cho tam giác ABC có AB = 15 cm, AC = 20 cm. Trên hai cạnh AB, AC lần lượt lấy 2 điểm E, D sao cho AD = 8cm, AE = 6cm. Chứng minh Δ AED ∼ Δ ABC.

Hướng dẫn:

⇒ Δ AED ∼ Δ ABC (c - g - c)

II. Bài tập tự luyện

1. Bài tập trắc nghiệm

Bài 1: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?

A. Δ ABC ∼ Δ DEF

B. ABCˆ = EFDˆ

C. ACBˆ = ADFˆ

D. ACBˆ = DEFˆ

Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A ta được

BC2 = AC2 + AB2 ⇒ AB = √ (BC2 - AC2) = √ (52 - 32) = 4( cm )

Ta có: cos ACBˆ = AC/BC = 3/5

Xét tam giác DEF có:

Khi đó ACBˆ = DEFˆ

Chọn đáp án B.

Bài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:

A. Δ RSK ∼ Δ PQM

B. Δ RSK ∼ Δ MPQ

C. Δ RSK ∼ Δ QPM

D. Δ RSK ∼ Δ QMP

Ta có: RS/PQ = RK/PM = SK/QM ⇒ Δ RSK ∼ Δ PQM

Chọn đáp án A.

Bài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thì

A. RSKˆ = PQMˆ

B. RSKˆ = PMQˆ

C. RSKˆ = MPQˆ

D. RSKˆ = QPMˆ

Ta có Δ RSK ∼ Δ PQM ⇔

Chọn đáp án A.

Bài 4: Chọn câu trả lời đúng?

A. Δ ABC, Δ DEF;AB/DE = AC/DF;Bˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF

B. Δ ABC, Δ DEF;AB/DE = AC/DF;Cˆ = Fˆ ⇒ Δ ABC ∼ Δ DEF

C. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Dˆ ⇒ Δ ABC ∼ Δ DEF

D. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF

Ta có:

Chọn đáp án C.

Bài 5: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD = 28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?

A. 17,5 

B. 18 

C. 18,5 

D. 19

Xét Δ ABD và Δ BDC có:

⇒ AB/BD = AD/BC = BD/DC

hay 12,5/x = x/28,5 ⇒ x2 = 1425/4 ⇔ x ≈ 18,87

Chọn đáp án D.

2. Bài tập tự luận

Bài 1: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng:

a) Δ BAD ∼ Δ DBC

b) ABCD là hình thang

Hướng dẫn:

a) Ta có:

BA/BD = AD/BC = BD/CD = 1/2 ⇒ Δ BAD ∼ Δ DBC (c - c - c)

b) Ta có: Δ BAD ∼ Δ DBC

⇒ ABDˆ = BDCˆ nên AB//CD

⇒ ABCD là hình thang.

Bài 2: Cho hình vẽ như bên, biết EBAˆ = BDCˆ

a) Trong hình vẽ có bao nhiêu tam giác vuông? Kể tên các tam giác vuông đó.

b) Cho AE = 10cm, AB = 15cm, BC = 12cm. Hãy tính độ dài các đoạn thẳng CD, BE, BD và ED (làm tròn đến chữ số thập phân thứ nhất)

c) So sánh diện tích tam giác BDE với tổng diện tích hai tam giác AEB và BCD

Hướng dẫn:

a) Từ giả thiết và tính chất về góc của tam giác vuông BCD ta có:

⇒ Bˆ1 + Bˆ2 = 900 ⇒ EBDˆ = 900 , do ABCˆ là góc bẹt

Vậy trong hình vẽ có 3 tam giác vuông là ABE, BCD, EDB

b) Ta có:

⇒ Δ CDB ∼ Δ ABE ( g - g )

⇒ CD/AB = BC/AE

hay CD/15 = 10/12 ⇔ CD = (10.15)/12 ⇒ CD = 18 ( cm )

Áp dụng định lý Py – ta – go vào tam giác vuông ABE có:

BE2 = AE2 + AB2 ⇒ BE2 = 102 + 152 ⇒ BE ≈ 18,0( cm )

Áp dụng định lý Py – ta – go vào tam giác vuông BCD có:

BD2 = CD2 + BC2 ⇒ BD2 = 182 + 122 = 468 ⇒ BD ≈ 21,6( cm )

Áp dụng định lý Py – ta – go vào tam giác vuông EBD có:

ED2 = BD2 + BE2 ⇒ ED2 = 325 + 468 = 793 ⇒ ED ≈ 28,2( cm )

c) Ta có:

Vậy SBED > SAEB + SBCD

Bài 3: Trên một cạnh của một góc xOy ( Ox ≠Oy ) đặt các đoạn thẳng OA = 5cm, OB = 16cm Trên cạnh thứ hai của góc đó đặt các đoạn thẳng OC = 8cm, OD = 10cm.

a) Chứng minh Δ OCB ∼ Δ OAD

b) Gọi I là giao điểm của các cạnh AD và BC. Chứng minh rằng Δ IAB và Δ ICD có các góc bằng nhau từng đôi một

Hướng dẫn:

a) Xét Δ OCB và Δ OAD có

⇒ Δ OCB ∼ Δ OAD (c - g - c)

b) Ta có: Δ OCB ∼ Δ OAD

⇒ ADOˆ = CBOˆ hay IDCˆ = IBAˆ

Mà CIDˆ = AIBˆ (vì đối đỉnh) ⇒ ICDˆ = IAB

Trên đây là nội dung tài liệu Chuyên đề Các trường hợp đồng dạng của tam giác Toán 8. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang hoc247.net để tải tài liệu về máy tính.

Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.

Ngoài ra các em có thể tham khảo thêm một số tư liệu cùng chuyên mục tại đây:

​Chúc các em học tập tốt!

 

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON