YOMEDIA
NONE

Giải bài 84 trang 93 SBT Toán 7 Cánh diều tập 2 - CD

Giải bài 84 trang 93 SBT Toán 7 Cánh diều tập 2

Cho tam giác ABC cân tại A có M là trung điểm của BC. G là giao điểm của hai trung tuyến BD và CE.

a) Chứng minh: GA, GM, MA lần lượt là tia phân giác của các góc DGE, BGC, EMD.

b) Tìm điều kiện của tam giác ABC để EG là tia phân giác của góc DEM.

ATNETWORK

Hướng dẫn giải chi tiết Bài 84

Phương pháp giải

- Chứng minh: \(\widehat {AGE} = \widehat {AGD}\) nên GA là tia phân giác góc DGE.

Chứng minh: \(\widehat {BGM} = \widehat {CGM}\) nên GM là tia phân giác góc BGC.

Chứng minh: \(\widehat {AME} = \widehat {AMD}\) nên MA là tia phân giác góc EMD.

- Cho EG là tia phân giác của góc DEM chứng minh tam giác ABC đều (AB = AB = BC)

Lời giải chi tiết

a)• Vì tam giác ABC cân tại A nên AB = AC, \(\widehat {ACB} = \widehat {ABC}\).

Vì E là trung điểm của AB nên AE = EB = \(\frac{1}{2}\)AB.

Vì D là trung điểm của AC nên AD = CD = \(\frac{1}{2}\) AC.

Mà AB = AC nên AE = EB = AD = CD.

Tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G nên G là trọng tâm của tam giác ABC.

Do đó đường trung tuyến AM của tam giác ABC cũng đi qua G.

Hay ba điểm A, G, M thẳng hàng.

Xét ∆ABM và ∆ACM có:

AB = AC (chứng minh trên),

AM là cạnh chung,

MB = MC (do M là trung điểm của BC).

Do đó ∆ABM = ∆ACM (c.c.c)

Suy ra \(\widehat {BAM} = \widehat {CAM}\) (hai góc tương ứng)

Xét ∆AEG và ∆ADG có:

AE = AD (chứng minh trên),

\(\widehat {EAG} = \widehat {DAG}\) (do \(\widehat {BAM} = \widehat {CAM}\)),

AG là cạnh chung

Do đó ∆AEG = ∆ADG (c.g.c).

Suy ra \(\widehat {AGE} = \widehat {AGD}\) (hai góc tương ứng).

Do vậy GA là tia phân giác của góc DGE.

• Ta có \(\widehat {BGM} = \widehat {AGD},\widehat {CGM} = \widehat {AGE}\) các cặp góc đối đỉnh)

Mà \(\widehat {AGE} = \widehat {AGD}\)

Nên \(\widehat {BGM} = \widehat {CGM}\)

Do đó GM là tia phân giác của góc BGC.

• Xét ∆AME và ∆AMD có:

AE = AD (chứng minh trên),

\(\widehat {E{\rm{A}}M} = \widehat {DAM}\) (do \(\widehat {BAM} = \widehat {CAM}\)),

AM là cạnh chung,

Do đó ∆AME = ∆AMD (c.g.c).

Suy ra \(\widehat {AME} = \widehat {AMD}\) (hai góc tương ứng)

Nên MA là tia phân giác của góc EMD.

Vậy GA, GM, MA lần lượt là tia phân giác của các góc DGE, BGC, EMD.

b) • Xét ∆ABC có \(\widehat {ABC} + \widehat {ACB} + \widehat {CAB} = 180^\circ \) (tổng ba góc của một tam giác)

Mà \(\widehat {ABC} = \widehat {ACB}\) nên \(\widehat {ABC} = \widehat {ACB} = \frac{{180^\circ  - \widehat {BAC}}}{2}\) 

Ta có AE = AD (chứng minh câu a)

Nên tam giác AED cân tại A

Suy ra \(\widehat {AE{\rm{D}}} = \widehat {ADE}\)

Xét ∆ADE có \(\widehat {ADE} + \widehat {AE{\rm{D}}} + \widehat {DA{\rm{E}}} = 180^\circ \) (tổng ba góc của một tam giác)

Mà \(\widehat {AE{\rm{D}}} = \widehat {ADE}\) nên \(\widehat {AED} = \widehat {ADE} = \frac{{180^\circ  - \widehat {BAC}}}{2}\)

Từ (1) và (2) suy ra \(\widehat {AED} = \widehat {ABC}\)

Mà hai góc này ở vị trí đồng vị

Do đó ED // BC.

Nên \(\widehat {DEC} = \widehat {ECM}\) (hai góc so le trong)

• Để EG là tia phân giác của góc DEM thì \(\widehat {DEC} = \widehat {CEM}\)

Suy ra \(\widehat {ECM} = \widehat {CEM}\) nên tam giác MEC cân tại M.

Do đó ME = MC

Mặt khác, MB = MC nên ME = MB = MC.

Suy ra tam giác EMB cân tại M nên \(\widehat {MEB} = \widehat {MBE}\).

• Xét ∆EBC có \(\widehat {BEC} + \widehat {BCE} + \widehat {EBC} = 180^\circ \) (tổng ba góc của một tam giác)

Hay \(\widehat {BEC} + \widehat {MCE} + \widehat {MBE} = 180^\circ \)

Mà \(\widehat {MEC} = \widehat {MCE}\) và \(\widehat {MEB} = \widehat {MBE}\)

Nên \(\widehat {BEC} + \widehat {MEC} + \widehat {MEB} = 180^\circ \) hay \(\widehat {BEC} + \widehat {BEC} = 180^\circ \)

Suy ra \(2\widehat {BEC} = 180^\circ \)

Do đó \(\widehat {BEC} = \frac{{180^\circ }}{2} = 90^\circ \) nên \(\widehat {AEC} = 90^\circ .\)

• Xét ∆BEC và ∆AEC có:

\(\widehat {BEC} = \widehat {AEC}\) (cùng bằng 90°),

EC là cạnh chung,

BE = AE (chứng minh câu a)

Do đó ∆BEC = ∆AEC (hai cạnh góc vuông).

Suy ra BC = AC.

Mà AB = AC (chứng minh câu a).

Do đó AB = BC = AC nên tam giác ABC là tam giác đều.

Vậy điều kiện để EG là tia phân giác của góc DEM là tam giác ABC là tam giác đều.

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 84 trang 93 SBT Toán 7 Cánh diều tập 2 - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON