Giải bài 6 trang 36 SGK Toán 7 Chân trời sáng tạo tập 2
Cho ba đa thức P(x) = \(9{x^4} - 3{x^3} + 5x - 1\)
Q(x) = \( - 2{x^3} - 5{x^2} + 3x - 8\)và R(x) = \( - 2{x^4} + 4{x^2} + 2x - 10\)
Tính P(x) + Q(x) + R(x) và P(x) – Q(x) – R(x)
Hướng dẫn giải chi tiết Bài 6
Phương pháp giải
+ Bước 1: Bỏ dấu ngoặc: Trước dấu ngoặc là dấu “ –“ thì ta bỏ dấu ngoặc đồng thời đổi dấu tất cả các số hạng trong ngoặc.
+ Bước 2: Nhóm các đơn thức cùng lũy thừa của biến
+ Bước 3: Thu gọn
Lời giải chi tiết
P(x)+Q(x)+R(x) = \(9{x^4} - 3{x^3} + 5x - 1 - 2{x^3} - 5{x^2} + 3x - 8 - 2{x^4} + 4{x^2} + 2x - 10\)
\(\begin{array}{l} = (9{x^4} - 2{x^4})+( - 3{x^3} - 2{x^3})+( - 5{x^2} + 4{x^2}) +( 5x + 3x + 2x)+( - 8 - 10 - 1)\\ = 7{x^4} - 5{x^3} - {x^2} + 10x - 19\end{array}\)
P(x)-Q(x)-R(x) = \(9{x^4} - 3{x^3} + 5x - 1 + 2{x^3} + 5{x^2} - 3x + 8 + 2{x^4} - 4{x^2} - 2x + 10\)
\(\begin{array}{l} = (9{x^4} + 2{x^4})+( - 3{x^3} + 2{x^3} )+ (5{x^2} - 4{x^2}) + (5x - 3x - 2x) + (10 - 1 + 8)\\ = 11{x^4} - {x^3} + {x^2} + 17\end{array}\)
-- Mod Toán 7 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 4 trang 36 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 36 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 36 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 36 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 36 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 30 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 30 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 30 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 30 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 30 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 30 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 30 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 30 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 31 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 31 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST