Giải bài 2 trang 18 SBT Toán 7 Chân trời sáng tạo tập 1
Tính:
a) \(\left( { - 0,5} \right) - \left( { - 1 + \dfrac{2}{3}} \right):1,5 + \left( {\dfrac{{ - 1}}{4}} \right)\)
b) \(\left[ {\left( {\dfrac{{ - 7}}{8}} \right):\dfrac{{21}}{{16}}} \right] - \dfrac{5}{3}.\left( {\dfrac{1}{3} - \dfrac{7}{{10}}} \right)\)
c) \({\left[ {\left( {\dfrac{{ - 2}}{3}} \right) + \dfrac{3}{4}} \right]^2}.\dfrac{{12}}{5} - \dfrac{1}{5}\)
d) \({\left( {\dfrac{1}{{25}} - 0,4} \right)^2}:\dfrac{9}{{125}} - \left[ {\left( {1\dfrac{1}{3} - \dfrac{2}{5}} \right).\dfrac{3}{7}} \right]\)
e) \(\left\{ {3\dfrac{{17}}{{18}}.\left[ {\dfrac{5}{2} - \left( {\dfrac{1}{3} + \dfrac{2}{9}} \right)} \right]} \right\}:{\left[ {\left( {\dfrac{{ - 1}}{2}} \right) + 0,25} \right]^2}\)
Hướng dẫn giải chi tiết Bài 2
Phương pháp giải
Áp dụng quy tắc bỏ ngoặc rồi tính toán, nếu có lũy thừa hay số thập phân thì ta viết chúng dưới dạng phân số để thuận lợi trong tính toán
Lời giải chi tiết
a) \(\left( { - 0,5} \right) - \left( { - 1 + \dfrac{2}{3}} \right):1,5 + \left( {\dfrac{{ - 1}}{4}} \right)\)
\(\begin{array}{l} = \left( {\dfrac{{ - 1}}{2}} \right) - \left( {\dfrac{{ - 3}}{3} + \dfrac{2}{3}} \right):\dfrac{3}{2} + \left( {\dfrac{{ - 1}}{4}} \right)\\ = \left( {\dfrac{{ - 1}}{2}} \right) - \left( {\dfrac{{ - 1}}{3}} \right).\dfrac{2}{3} + \left( {\dfrac{{ - 1}}{4}} \right)\\ = \left( {\dfrac{{ - 1}}{2}} \right) + \dfrac{2}{9} + \left( {\dfrac{{ - 1}}{4}} \right)\\ = \left( {\dfrac{{ - 18}}{{36}}} \right) + \dfrac{8}{{36}} + \left( {\dfrac{{ - 9}}{{36}}} \right) = \dfrac{{ - 19}}{{36}}\end{array}\)
b) \(\left[ {\left( {\dfrac{{ - 7}}{8}} \right):\dfrac{{21}}{{16}}} \right] - \dfrac{5}{3}.\left( {\dfrac{1}{3} - \dfrac{7}{{10}}} \right)\)
\(\begin{array}{l} = \left[ {\left( {\dfrac{{ - 7}}{8}} \right).\dfrac{{16}}{{21}}} \right] - \dfrac{5}{3}.\left( {\dfrac{{10}}{{30}} - \dfrac{{21}}{{30}}} \right)\\ = \dfrac{{\left( { - 7} \right).16}}{{8.21}} - \dfrac{5}{3}.\left( {\dfrac{{ - 11}}{{30}}} \right)\end{array}\)
\(\begin{array}{l} = - \dfrac{{7.8.2}}{{8.7.3}} + \dfrac{{5.11}}{{3.5.6}}\\ = \dfrac{{ - 2}}{3} + \dfrac{{11}}{{18}} = \dfrac{{ - 1}}{{18}}\end{array}\)
c) \({\left[ {\left( {\dfrac{{ - 2}}{3}} \right) + \dfrac{3}{4}} \right]^2}.\dfrac{{12}}{5} - \dfrac{1}{5}\) \( = {\left[ {\left( {\dfrac{{ - 8}}{{12}}} \right) + \dfrac{9}{{12}}} \right]^2}.\dfrac{{12}}{5} - \dfrac{1}{5} = {\left( {\dfrac{1}{{12}}} \right)^2}.\dfrac{{12}}{5} - \dfrac{1}{5}\\ = \dfrac{1}{{{{12}^2}}}.\dfrac{{12}}{5} - \dfrac{1}{5} = \dfrac{1}{{60}} - \dfrac{1}{5}= \dfrac{1}{{60}} - \dfrac{12}{60} = \dfrac{{ - 11}}{{60}}\)
d) \({\left( {\dfrac{1}{{25}} - 0,4} \right)^2}:\dfrac{9}{{125}} - \left[ {\left( {1\dfrac{1}{3} - \dfrac{2}{5}} \right).\dfrac{3}{7}} \right]\)
\(\begin{array}{l} = {\left( {\dfrac{1}{{25}} - \dfrac{2}{5}} \right)^2}.\dfrac{{125}}{9} - \left[ {\left( {\dfrac{4}{3} - \dfrac{2}{5}} \right).\dfrac{3}{7}} \right]\\ = {\left( {\dfrac{{ - 9}}{{25}}} \right)^2}.\dfrac{{125}}{9} - \left( {\dfrac{{14}}{{15}}.\dfrac{3}{7}} \right)\\ = \dfrac{{{9^2}}}{{{{25}^2}}}.\dfrac{{125}}{9} - \dfrac{2}{5}\\ = \dfrac{{{{\left( {{3^2}} \right)}^2}}}{{{{\left( {{5^2}} \right)}^2}}}.\dfrac{{{5^3}}}{{{3^2}}} - \dfrac{2}{5} = \dfrac{{{3^2}}}{5} - \dfrac{2}{5} = \dfrac{9}{5} - \dfrac{2}{5} = \dfrac{7}{5}\end{array}\)
e) \(\left\{ {3\dfrac{{17}}{{18}}.\left[ {\dfrac{5}{2} - \left( {\dfrac{1}{3} + \dfrac{2}{9}} \right)} \right]} \right\}:{\left[ {\left( {\dfrac{{ - 1}}{2}} \right) + 0,25} \right]^2}\)
\(\begin{array}{l} = \left\{ {\dfrac{{71}}{{18}}.\left[ {\dfrac{5}{2} - \dfrac{5}{9}} \right]} \right\}:{\left[ {\left( {\dfrac{{ - 1}}{2}} \right) + \dfrac{1}{4}} \right]^2}\\ = \left( {\dfrac{{71}}{{18}}.\dfrac{{35}}{{18}}} \right):{\left( {\dfrac{1}{4}} \right)^2} = \dfrac{{2485}}{{324}}:\dfrac{1}{{16}} \\= \dfrac{{2485}}{{324}}.16 = \dfrac{{9940}}{{81}}\end{array}\)
-- Mod Toán 7 HỌC247
-
Hãy tìm giá trị x biết \(\left( {x - \frac{3}{{14}}} \right):\frac{4}{{21}} = - \frac{3}{4}\)
bởi thu trang 03/08/2022
Theo dõi (0) 1 Trả lời -
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 6 trang 25 SGK Toán 7 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 17 SBT Toán 7 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 18 SBT Toán 7 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 18 SBT Toán 7 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 18 SBT Toán 7 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 18 SBT Toán 7 Chân trời sáng tạo tập 1 - CTST