YOMEDIA
NONE

Giải bài 11 trang 39 SBT Toán 7 Cánh diều tập 1 - CD

Giải bài 11 trang 39 SBT Toán 7 Cánh diều tập 1

Chứng tỏ rằng \(\sqrt 2 \) là số vô tỉ.

ATNETWORK

Hướng dẫn giải chi tiết

Phương pháp giải:

Ta chứng minh \(\sqrt 2 \) là số vô tỉ bằng cách chứng minh điều ngược lại là sai: giả sử \(\sqrt 2 \) không là số vô tỉ.

Lời giải chi tiết:

Giả sử \(\sqrt 2 \) là số hữu tỉ.

Như vậy, \(\sqrt 2 \) có thể viết được dưới dạng \(\dfrac{m}{n}\) với \(m,n \in \mathbb{N}\) và \((m,n) = 1\).

Ta có:  \(\sqrt 2  = \dfrac{m}{n}\) nên \({\left( {\sqrt 2 } \right)^2} = {\left( {\dfrac{m}{n}} \right)^2}\) hay \(2 = \dfrac{{{m^2}}}{{{n^2}}}\). Suy ra: \({m^2} = 2{n^2}\).

Mà \((m,n) = 1\) nên \({m^2}\) chia hết cho 2 hay m chia hết cho 2. Do đó \(m = 2k\) với \(k \in \mathbb{N}\) và \((k,n) = 1\).

Thay \(m = 2k\) vào \({m^2} = 2{n^2}\) ta được: \(4{k^2} = 2{n^2}\) hay \({n^2} = 2{k^2}\).

Do \((k,n) = 1\) nên \({n^2}\) chia hết cho 2 hay n chia hết cho 2.

Suy ra m và n đều chia hết cho 2 mâu thuẫn với \((m,n) = 1\).

Vậy \(\sqrt 2 \) không là số hữu tỉ mà là số vô tỉ. 

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 11 trang 39 SBT Toán 7 Cánh diều tập 1 - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
NONE
ON