YOMEDIA
NONE

Giải Bài 9.2 trang 86 SGK Toán 11 Kết nối tri thức tập 2 - KNTT

Giải Bài 9.2 trang 86 SGK Toán 11 Kết nối tri thức tập 2

Sử dụng định nghĩa, tìm đạo hàm của các hàm số sau:

a) \( y = kx^{2} + c\) (với k, c là các hằng số);

b) \(y = x^{3}\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 9.2

Phương pháp giải

Nếu tồn tại giới hạn hữu hạn

\[\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\]

thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại điểm x0, kí hiệu bởi f'(x0) (hoặc y'(x0)), tức là

\[f'(x_0) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}.\]

 

Lời giải chi tiết

a) \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\)

\(= \lim_{h \to 0} \frac{k(x+h)^{2}+c - (kx^{2}+c)}{h}\)

\(= \lim_{h \to 0} \frac{kx^{2}+2kxh+kh^{2}+c-kx^{2}-c}{h}\)

\(= \lim_{h \to 0} \frac{2kxh+kh^{2}}{h}\)

\(= \lim_{h \to 0} (2kx + kh)\)

\(= 2kx\)

 

b) \( f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\)

\(= \lim_{h \to 0} \frac{(x+h)^{3}-x^{3}}{h}\)

\(= \lim_{h \to 0} \frac{x^{3}+3x^{2}h+3xh^{2}+h^{3}-x^{3}}{h}\)

\(= \lim_{h \to 0} \frac{3x^{2}h+3xh^{2}+h^{3}}{h}\)

\(= \lim_{h \to 0} (3x^{2}+3xh+h^{2})\)

\(= 3x^{2}\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 9.2 trang 86 SGK Toán 11 Kết nối tri thức tập 2 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON