Bài tập 44 trang 45 SBT Toán 11 Tập 2 Cánh diều
Lập bảng biến thiên và vẽ đồ thị hàm số:
a) \(y = {\left( {\sqrt 2 } \right)^x};\)
b) \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^x};\)
c) \(y = {\log _{\sqrt 3 }}x;\)
d) \(y = - {\log _2}x.\)
Hướng dẫn giải chi tiết Bài tập 44
a) Vì hàm số \(y = {\left( {\sqrt 2 } \right)^x}\) có cơ số \(\sqrt 2 > 1\) nên ta có bảng biến thiên như sau:
Đồ thị của hàm số \(y = {\left( {\sqrt 2 } \right)^x}\) là một đường cong liền nét đi qua các điểm \(\left( { - 2;\frac{1}{2}} \right),\left( {0;1} \right),\left( {2;2} \right),\left( {4;4} \right).\)
b) Vì hàm số \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^x}\) có cơ số \(\frac{1}{{\sqrt 2 }} < 1\) nên ta có bảng biến thiên như sau:
Đồ thị của hàm số \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^x}\) là một đường cong liền nét đi qua các điểm \(\left( { - 4;4} \right),\left( { - 2;2} \right),\left( {0;1} \right),\left( {2;\frac{1}{2}} \right).\)
c) Vì hàm số \(y = {\log _{\sqrt 3 }}x\) có cơ số \[\sqrt 3 > 1\] nên ta có bảng biến thiên như sau:
Đồ thị của hàm số \(y = {\log _{\sqrt 3 }}x\) là một đường cong liền nét đi qua các điểm \(\left( {\frac{1}{3}; - 2} \right),\left( {1;0} \right),\left( {3;2} \right),\left( {9;4} \right).\)
d) Vì hàm số \(y = - {\log _2}x\) có cơ số \(2 > 1\) nên ta có bảng biến thiên như sau:
Đồ thị của hàm số \(y = - {\log _2}x\) là một đường cong liền nét đi qua các điểm \(\left( {\frac{1}{2};1} \right),\left( {1;0} \right),\left( {2; - 1} \right),\left( {4; - 2} \right).\)
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Bài tập 42 trang 45 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 43 trang 45 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 45 trang 45 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 46 trang 45 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 47 trang 46 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 48 trang 46 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 49 trang 46 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 50 trang 46 SBT Toán 11 Tập 2 Cánh diều - CD