Bài tập 47 trang 46 SBT Toán 11 Tập 2 Cánh diều
Tìm tập xác định của các hàm số:
a) \(y = {\left( {\frac{1}{2}} \right)^{2x - 5}};\)
b) \(y = {3^{\frac{{x - 1}}{{x + 1}}}};\)
c) \(y = 1,{5^{\sqrt {x + 2} }};\)
d) \(y = {\log _5}\left( {1 - 5x} \right);\)
e) \(y = {\rm{log}}\left( {4{x^2} - 9} \right);\)
g) \(y = \ln \left( {{x^2} - 4x + 4} \right).\)
Hướng dẫn giải chi tiết Bài tập 47
a) Hàm số \(y = {\left( {\frac{1}{2}} \right)^{2x - 5}}\) có tập xác định là \(\mathbb{R}.\)
b) Hàm số \(y = {3^{\frac{{x - 1}}{{x + 1}}}}\) có tập xác định là \(\mathbb{R}\backslash \left\{ { - 1} \right\}.\)
c) Hàm số \(y = 1,{5^{\sqrt {x + 2} }}\) xác định khi: \(x + 2 \ge 0 \Leftrightarrow x \ge - 2.\) Vậy tập xác định của hàm số là \(\left[ { - 2; + \infty } \right).\)
d) Hàm số \(y = {\log _5}\left( {1 - 5x} \right)\) xác định khi: \(1 - 5x > 0 \Leftrightarrow x < \frac{1}{5}.\) Vậy tập xác định của hàm số là \(\left( { - \infty ;\frac{1}{5}} \right).\)
e) Hàm số \(y = {\rm{log}}\left( {4{x^2} - 9} \right)\) xác định khi: \(4{x^2} - 9 > 0 \Leftrightarrow {x^2} > \frac{9}{4} \Leftrightarrow \left[ \begin{array}{l}x > \frac{3}{2}.\\x < - \frac{3}{2}.\end{array} \right.\)
Vậy tập xác định của hàm số là \(\left( { - \infty ; - \frac{3}{2}} \right) \cup \left( {\frac{3}{2}; + \infty } \right).\)
g) Hàm số \(y = \ln \left( {{x^2} - 4x + 4} \right)\) xác định khi: \({x^2} - 4x + 4 > 0 \Leftrightarrow {\left( {x - 2} \right)^2} > 0\).
\( \Leftrightarrow x \ne 2.\) Vậy tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 2 \right\}.\)
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Bài tập 45 trang 45 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 46 trang 45 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 48 trang 46 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 49 trang 46 SBT Toán 11 Tập 2 Cánh diều - CD
Bài tập 50 trang 46 SBT Toán 11 Tập 2 Cánh diều - CD