Bài tập 51 trang 46 SBT Toán 11 Tập 2 Cánh diều
Các nhà khoa học xác định được chu kì bán rã của \({}_6^{14}C\) là 5730 năm, tức là sau 5730 năm thì số nguyên tử \({}_6^{14}C\) giảm đi một nửa.
a) Gọi \({m_0}\) là khối lượng của \({}_6^{14}C\) tại thời điểm \(t = 0\). Viết công thức tính khối lượng \(m\left( t \right)\) của \({}_6^{14}C\) tại thời điểm t (năm).
b) Một cây còn sống có lượng \({}_6^{14}C\) trong cây được duy trì không đổi. Nhưng nếu cây chết thì lượng \({}_6^{14}C\) trong cây phân rã theo chu kì bán rã của nó. Các nhà khảo cổ đã tìm thấy một mẫu gỗ cổ được xác định chết cách đây 2000 năm. Tính tỉ lệ phần trăm lượng \({}_6^{14}C\) còn lại trong mẫu gỗ cổ đó so với lúc còn sinh trưởng (làm tròn kết quả đến hàng phần mười).
Hướng dẫn giải chi tiết Bài tập 51
a) Chất phóng xạ có chu kì bán rã là T = 5730 (năm).
Cứ sau 5730 năm, khối lượng của chất phóng xạ đó giảm đi một nửa.
Suy ra khối lượng của chất đó còn lại sau t năm là:
\(m\left( t \right) = \frac{{{m_0}}}{{{2^{\frac{t}{T}}}}}\) trong đó m0 là khối lượng của \({}_6^{14}C\) tại thời điểm \(t = 0\).
b) Từ công thức: \(m\left( t \right) = \frac{{{m_0}}}{{{2^{\frac{t}{T}}}}} \Rightarrow \frac{{m\left( t \right)}}{{{m_0}}} = \frac{1}{{{2^{\frac{t}{T}}}}}.\)
Suy ra tỉ lệ phần trăm lượng \({}_6^{14}C\) còn lại trong mẫu gỗ cổ đó so với lúc còn sinh trưởng là:
\(\% {}_6^{14}C = \frac{{m\left( t \right)}}{{{m_0}}}.100\% = \frac{1}{{{2^{\frac{t}{T}}}}}.100\% = \frac{1}{{{2^{\frac{{2000}}{{5730}}}}}}.100\% \approx 78,5\% .\)
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.