Bài tập 36 trang 68 SGK Hình học 11 NC
Cho hình lăng trụ đứng tam giác ABC.A’B’C’. Gọi H là trung điểm của cạnh A’B’.
a. Chứng minh rằng đường thẳng CB’ song song với mp(AHC’)
b. Tìm giao tuyến d của hai mặt phẳng (AB’C’) và (A’BC). Chứng minh rằng d song song với mp(BB’C’C)
c. Xác định thiết diện của hình lăng trụ ABC.A’B’C’khi cắt bởi mp(H , d)
Hướng dẫn giải chi tiết
a) Chứng minh CB' // (AHC’)
Ta tìm trong (AHC’) một đường thẳng song song với CB’, muốn vậy ta tìm giao tuyến của một mặt phẳng chứa CB’ với (AHC’), đó là (A’CB’).
Gọi O là giao điểm AC’ và A’C.
AA’C’C là hình bình hành nên O là trung điểm của A’C.
Do đó HO là đường trung bình của ∆A’B’C
⇒ HO // B’C ⇒ B’C // (AHC’). ( vì HO ⊂ (AHC’)).
b) Tìm giao tuyến d của (AB’C’) và (A’BC).
Gọi O’ là giao điểm của AB’ và A’B thì O, O’ là hai điểm chung của hai mặt phẳng (AB’C’) và (A’BC) nên (AB’C’) ∩ (A’BC) = OO’
Vậy d = OO’. Ta có O’ là trung điểm của AB’ (vì AA’B’B là hình bình hành).
⇒ OO’ là đường trung bình của ∆AB’C’.
⇒ OO’ // B’C' // BC ⇒ OO’ // (BB’C’C) ⇒ d // (BB’C’C).
c) Gọi {K} = HO’ ∩ AB thì HK // AA’
Qua O kẻ ML // AA’ ( M ∈ A’C’, L ∈ AC).
Thiết diện cần tìm là hình bình hành HKLM.
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.