Bài 3 trang 109 SGK Toán 11 Cánh diều Tập 1
Cho tứ diện ABCD. Lấy G1, G2, G3 lần lượt là trọng tâm của các tam giác ABC, ACD, ADB.
a) Chứng minh rằng (G1G2G3) // (BCD)?
b) Xác định giao tuyến của mặt phẳng (G1G2G3) với mặt phẳng (ABD)?
Hướng dẫn giải chi tiết Bài 3
a)
Gọi M, N, P lần lượt là trung điểm của BC, CD, DB.
Trong mp(ABC), xét ABC có G1 là trọng tâm của tam giác nên ;
Trong mp(ACD), xét ACD có G2 là trọng tâm của tam giác nên ;
Trong mp(ABD), xét ABD có G3 là trọng tâm của tam giác nên .
Trong mp(AMP), xét AMP có nên G1G3 // MP (theo định lí Thalès đảo).
Mà MP ⊂ (BCD) nên G1G3 // (BCD).
Chứng minh tương tự ta cũng có nên G2G3 // NP (theo định lí Thalès đảo).
Mà NP ⊂ (BCD) nên G2G3 // (BCD).
Ta có: G1G3 // (BCD);
G2G3 // (BCD);
G1G3, G2G3 cắt nhau tại G3 và cùng nằm trong mp(G1G2G3).
Do đó (G1G2G3) // (BCD).
b)
Ta có: B, D cùng thuộc hai mặt phẳng (ABD) và (BCD) nên (ABD) ∩ (BCD) = BD.
Giả sử (ABD) ∩ (G1G2G3) = d.
Ta có: (G1G2G3) // (BCD);
(ABD) ∩ (BCD) = BD;
(ABD) ∩ (G1G2G3) = d.
Suy ra d // BD.
Mà G3 ∈ (ABD) và G3 ∈ (G1G2G3) nên G3 là giao điểm của (G1G2G3) và (ABD).
Do đó giao tuyến d của hai mặt phẳng (G1G2G3) và (ABD) đi qua điểm G3 và song song với BD, cắt AB, AD lần lượt tại I và K.
Vậy (G1G2G3) ∩ (ABD) = IK.
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Bài 1 trang 109 SGK Toán 11 Cánh diều Tập 1 - CD
Bài 2 trang 109 SGK Toán 11 Cánh diều Tập 1 - CD
Bài 4 trang 109 SGK Toán 11 Cánh diều Tập 1 - CD
Bài tập 28 trang 108 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 29 trang 108 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 30 trang 108 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 31 trang 108 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 32 trang 108 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 33 trang 108 SBT Toán 11 Tập 1 Cánh diều - CD