YOMEDIA
NONE

Bài tập 34 trang 109 SBT Toán 11 Tập 1 Cánh diều - CD

Bài tập 34 trang 109 SBT Toán 11 Tập 1 Cánh diều

Cho hình chóp \(S.ABCD\) có đáy\(ABCD\) là hình thang với đáy lớn \(AD\). Gọi \(M\) là trọng tâm của tam giác \(SAD\), \(N\) là điểm thuộc đoạn thẳng \(AC\) sao cho \(AN = \frac{1}{3}AC\), \(P\) là điểm thuộc đoạn thẳng \(CD\) sao cho \(DP = \frac{1}{3}DC\). Chứng mình rằng \(\left( {MNP} \right)\parallel \left( {SBC} \right)\)?

ATNETWORK

Hướng dẫn giải chi tiết Bài tập 34

Ta có \(\frac{{AN}}{{AC}} = \frac{{DP}}{{DC}}\left( { = \frac{1}{3}} \right)\) nên theo định lí Thales, ta có \(NP\parallel AD\).

Do \(ABCD\) là hình thang với đáy lớn \(AD\), ta có \(AD\parallel BC\).

Như vậy \(NP\parallel BC\).

Mà \(BC \subset \left( {SBC} \right)\), ta kết luận rằng \(NP\parallel \left( {SBC} \right)\).

Gọi \(E\) là trung điểm của \(AD\).

Do \(M\) là trọng tâm của tam giác \(SAD\) nên \(M \in SE\) và \(\frac{{SM}}{{SE}} = \frac{2}{3}\).

Từ đó\(\frac{{EM}}{{ES}} = \frac{1}{3}\).

Gọi \(I\) là giao điểm của \(NP\) và \(EC\).

Xét tam giác \(CDE\), ta có \(IP\parallel DE \Rightarrow \frac{{EI}}{{EC}} = \frac{{DP}}{{DC}} = \frac{1}{3}\).

Vậy \(\frac{{EI}}{{EC}} = \frac{{EM}}{{ES}}\left( { = \frac{1}{3}} \right)\), từ đó ta có \(MI\parallel SC\).

Do \(SC \subset \left( {SBC} \right)\) nên \(MI\parallel \left( {SBC} \right)\).

Như vậy ta có \(NP\parallel \left( {SBC} \right)\), \(MI\parallel \left( {SBC} \right)\).

Mà \(NP \cap MI = \left\{ I \right\}\), nên ta suy ra \(\left( {MNP} \right)\parallel \left( {SBC} \right)\).

Bài toán được chứng minh.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 34 trang 109 SBT Toán 11 Tập 1 Cánh diều - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON