Bài tập 6.12 trang 10 SBT Toán 11 Tập 2 Kết nối tri thức
Chứng minh rằng:
a) \({\rm{lo}}{{\rm{g}}_a}\left( {x + \sqrt {{x^2} - 1} } \right) + {\rm{lo}}{{\rm{g}}_a}\left( {x - \sqrt {{x^2} - 1} } \right) = 0\);
b) \({\rm{ln}}\left( {1 + {e^{2x}}} \right) = 2x + {\rm{ln}}\left( {1 + {e^{ - 2x}}} \right)\).
Hướng dẫn giải chi tiết Bài 6.12
a) Ta có: \({\rm{lo}}{{\rm{g}}_a}\left( {x + \sqrt {{x^2} - 1} } \right) + {\rm{lo}}{{\rm{g}}_a}\left( {x - \sqrt {{x^2} - 1} } \right) = {\rm{lo}}{{\rm{g}}_a}\left[ {\left( {x + \sqrt {{x^2} - 1} } \right)\left( {x - \sqrt {{x^2} - 1} } \right)} \right]\).
\({\rm{ = lo}}{{\rm{g}}_a}\left( {{x^2} - \left( {{x^2} - 1} \right)} \right) = \)\( = {\rm{lo}}{{\rm{g}}_a}1 = 0\).
b) Ta có: \({\rm{ln}}\left( {1 + {e^{2x}}} \right) = {\rm{ln}}\left[ {{e^{2x}}\left( {1 + {e^{ - 2x}}} \right)} \right] = {\rm{ln}}{e^{2x}} + {\rm{ln}}\left( {1 + {e^{ - 2x}}} \right)\)\( = 2x + {\rm{ln}}\left( {1 + {e^{ - 2x}}} \right){\rm{.\;}}\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải Bài 6.14 trang 15 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Bài tập 6.11 trang 10 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.13 trang 10 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.14 trang 10 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.15 trang 10 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.16 trang 10 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.17 trang 10 SBT Toán 11 Tập 2 Kết nối tri thức
Bài tập 6.18 trang 10 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.19 trang 11 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.20 trang 11 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT