YOMEDIA
NONE

Bài tập 6.12 trang 10 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT

Bài tập 6.12 trang 10 SBT Toán 11 Tập 2 Kết nối tri thức

Chứng minh rằng:

a) \({\rm{lo}}{{\rm{g}}_a}\left( {x + \sqrt {{x^2} - 1} } \right) + {\rm{lo}}{{\rm{g}}_a}\left( {x - \sqrt {{x^2} - 1} } \right) = 0\);

b) \({\rm{ln}}\left( {1 + {e^{2x}}} \right) = 2x + {\rm{ln}}\left( {1 + {e^{ - 2x}}} \right)\).

ATNETWORK

Hướng dẫn giải chi tiết Bài 6.12

a) Ta có: \({\rm{lo}}{{\rm{g}}_a}\left( {x + \sqrt {{x^2} - 1} } \right) + {\rm{lo}}{{\rm{g}}_a}\left( {x - \sqrt {{x^2} - 1} } \right) = {\rm{lo}}{{\rm{g}}_a}\left[ {\left( {x + \sqrt {{x^2} - 1} } \right)\left( {x - \sqrt {{x^2} - 1} } \right)} \right]\).

\({\rm{ = lo}}{{\rm{g}}_a}\left( {{x^2} - \left( {{x^2} - 1} \right)} \right) = \)\( = {\rm{lo}}{{\rm{g}}_a}1 = 0\).

b) Ta có: \({\rm{ln}}\left( {1 + {e^{2x}}} \right) = {\rm{ln}}\left[ {{e^{2x}}\left( {1 + {e^{ - 2x}}} \right)} \right] = {\rm{ln}}{e^{2x}} + {\rm{ln}}\left( {1 + {e^{ - 2x}}} \right)\)\( = 2x + {\rm{ln}}\left( {1 + {e^{ - 2x}}} \right){\rm{.\;}}\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 6.12 trang 10 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON