Bài tập 6.18 trang 10 SBT Toán 11 Tập 2 Kết nối tri thức
Khi gửi tiết kiệm \(P\) (đồng) theo thể thức trả lãi kép định kì với lãi suất mỗi kì là \(r\) ( \(r\) cho dưới dạng số thập phân) thì số tiền \(A\) (cả vốn lẫn lãi) nhận được sau \(t\) kì gửi là \(A = P{(1 + r)^t}\) (đồng). Tính thời gian gửi tiết kiệm cần thiết đề số tiền ban đầu tăng gấp đôi?
Hướng dẫn giải chi tiết Bài 6.18
Để số tiền ban đầu tăng gấp đôi thì \(A = 2P\).
Thay \(A = 2P\) vào công thức lãi kép ta có: \(2P = P{(1 + r)^t}\), suy ra: \({{\log }_{P(1+r)}}=2P\)
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.