YOMEDIA
NONE

Hoạt động 4 trang 90 SGK Toán 10 Cánh diều tập 2 - CD

Hoạt động 4 trang 90 SGK Toán 10 Cánh diều tập 2

Cho điểm (\({M_o}\left( {{x_o};{\rm{ }}{y_o}} \right)\)) nằm trên đường tròn (C) tâm I(a; b) bán kính R. Gọi \(\Delta \) là tiếp tuyến tại điểm \({M_o}\left( {{x_o};{\rm{ }}{y_o}} \right)\) thuộc đường tròn (Hình 44).

a) Chứng tỏ rằng \(\overrightarrow {I{M_o}} \) là vectơ pháp tuyến của đường thẳng \(\Delta \).

b) Tính toạ độ của \(\overrightarrow {I{M_o}} \).

c) Lập phương trình tổng quát của đường thẳng \(\Delta \).

ATNETWORK

Hướng dẫn giải chi tiết Hoạt động 4

Phương pháp giải

Phương trình tiếp tuyến của đường tròn tâm I(a, b) tại điểm \({M_0}\left( {{x_0};{y_0}} \right)\) nằm trên đường tròn là:

\(\left( {a - {x_0}} \right)\left( {x - {x_0}} \right) + \left( {b - {y_0}} \right)\left( {y - {y_0}} \right) = 0\) 

Hướng dẫn giải

a) Do \(\Delta \) là pháp tuyến của đường tròn (C) tại điểm \({M_o}\) nên \(\Delta \) vuông góc với \(I{M_o}\). Vậy \(\overrightarrow {I{M_o}} \) là vectơ pháp tuyến của đường thẳng \(\Delta \).

b) Tọa độ \(\overrightarrow {I{M_o}}  = \left( {{x_o} - a;{y_o} - b} \right)\)

c) Đường thẳng \(\Delta \)đi qua điểm \({M_o}\)và có vecto pháp tuyến \(\overrightarrow {I{M_o}} \)là: \(\left( {{x_o} - a} \right)\left( {x - {x_o}} \right) + \left( {{y_o} - b} \right)\left( {y - {y_o}} \right) = 0\) 

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Hoạt động 4 trang 90 SGK Toán 10 Cánh diều tập 2 - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
NONE
ON