Giải bài 7.20 trang 41 SBT Toán 10 Kết nối tri thức tập 2
Phương trình nào dưới đây là phương trình của một đường tròn? Khi đó hãy tìm tâm và bán kính của nó
a) \({x^2} + 2{y^2} - 4x - 2y + 1 = 0\)
b) \({x^2} + {y^2} - 4x + 3y + 2xy = 0\)
c) \({x^2} + {y^2} - 8x - 6y + 26 = 0\)
d) \({x^2} + {y^2} + 6x - 4y + 13 = 0\)
e) \({x^2} + {y^2} - 4x + 2y + 1 = 0\)
Hướng dẫn giải chi tiết Bài 7.20
Phương pháp giải
Phương trình: \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình đường tròn khi: \({a^2} + {b^2} - c > 0\) khi đó \(I\left( {a;b} \right),R = \sqrt {{a^2} + {b^2} - c} \)
Lời giải chi tiết
a) \({x^2} + 2{y^2} - 4x - 2y + 1 = 0\)
Phương trình đã cho không là phương trình của đường tròn vì hệ số của \({x^2}\) và \({y^2}\) không bằng nhau
b) \({x^2} + {y^2} - 4x + 3y + 2xy = 0\)
Phương trình đã cho không là phương trình của đường tròn, vì trong phương trình đường tròn không chứa \(xy\)
c) \({x^2} + {y^2} - 8x - 6y + 26 = 0\)
+ Phương trình đã cho có các hệ số \(a = 4,b = 3,c = 26\)
+ Tính \({a^2} + {b^2} - c = {3^2} + {4^2} - 26 = - 1 < 0\)
\(\Rightarrow \) Đây không phải là phương trình của đường tròn
d) \({x^2} + {y^2} + 6x - 4y + 13 = 0\)
+ Phương trình đã cho có các hệ số \(a = - 3,b = 2,c = 13\)
+ Tính \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {2^2} - 13 = 0\)
\(\Rightarrow \) Đây không phải là phương trình của đường tròn
e) \({x^2} + {y^2} - 4x + 2y + 1 = 0\)
+ Phương trình đã cho có các hệ số \(a = 2,b = - 1,c = 1\)
+ Tính \({a^2} + {b^2} - c = {2^2} + {\left( { - 1} \right)^2} - 1 = 4 > 0\), nên phương trình của đường tròn có tâm \(I\left( {2; - 1} \right)\) và bán kính \(R = \sqrt 4 = 2\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 7.18 trang 47 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.19 trang 41 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.21 trang 41 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.22 trang 41 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.23 trang 42 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.24 trang 42 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.25 trang 42 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.26 trang 42 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.27 trang 42 SBT Toán 10 Kết nối tri thức tập 2 - KNTT