YOMEDIA
NONE

Giải bài 7.23 trang 42 SBT Toán 10 Kết nối tri thức tập 2 - KNTT

Giải bài 7.23 trang 42 SBT Toán 10 Kết nối tri thức tập 2

Cho đường thẳng \(\left( C \right)\) có phương trình \({x^2} + {y^2} + 6x - 4y - 12 = 0\). Viết phương trình tiếp tuyến của \(\Delta \) của \(\left( C \right)\) tại điểm \(M\left( {0, - 2} \right)\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 7.23

Phương pháp giải

Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm M có vector pháp tuyến là IM với I là tâm đường tròn \(\left( C \right)\)

Lời giải chi tiết

+ \({x^2} + {y^2} + 6x - 4y - 12 = 0 \Rightarrow {\left( {x + 3} \right)^2} + {\left( {y - 2} \right)^2} = 25 \Rightarrow I\left( { - 3;2} \right)\)

+ Phương trình tiếp tuyến \(\Delta \) của \(\left( C \right)\) tại điểm \(M\left( {0, - 2} \right)\) vector pháp tuyến là \(\overrightarrow {IM}  = \left( {3; - 4} \right)\)

+ Phương trình đường thẳng \(\Delta :3\left( {x - 0} \right) - 4\left( {y + 2} \right) = 0 \Rightarrow \Delta :3x - 4y - 8 = 0\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 7.23 trang 42 SBT Toán 10 Kết nối tri thức tập 2 - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON