Giải bài 6.28 trang 21 SBT Toán 10 Kết nối tri thức tập 2
Giải các phương trình sau:
a) \(\sqrt { - {x^2} + 77x - 212} = \sqrt {{x^2} + x - 2} \)
b) \(\sqrt {{x^2} + 25x - 26} = \sqrt {x - {x^2}} \)
c) \(\sqrt {4{x^2} + 8x - 37} = \sqrt { - {x^2} - 2x + 3} \)
Hướng dẫn giải chi tiết Bài 6.28
Phương pháp giải
Giải PT dạng \(\sqrt {a{x^2} + bx + c} = \sqrt {d{x^2} + ex + f} \) (1)
Bước 1: Bình phương 2 vế của (1) ta được PT \((a - d){x^2} + (b - 2de)x + (c - {e^2}) = 0\) (2)
Bước 2: Giải PT (2)
Bước 3: Thay các nghiệm vừa tìm được ở bước 2 vào PT (1) để tìm ra các nghiệm thỏa mãn rồi kết luận
Lời giải chi tiết
a) \(\sqrt { - {x^2} + 77x - 212} = \sqrt {{x^2} + x - 2} \) (1)
Bình phương 2 vế của (1) ta được:
\( - {x^2} + 77x - 212 = {x^2} + x - 2\) \( \Leftrightarrow 2{x^2} - 76x + 210 = 0\)\( \Leftrightarrow x = 3\) hoặc x = 35
+) Thay x = 3 vào PT (1): \(\sqrt { - {3^2} + 77.3 - 212} = \sqrt {{3^2} + 3 - 2} \Leftrightarrow \sqrt {10} = \sqrt {10} \) , thỏa mãn
+) Thay x = 35 vào PT (1): \(\sqrt { - {{35}^2} + 77.35 - 212} = \sqrt {{{35}^2} + 35 - 2} \Leftrightarrow \sqrt {1258} = \sqrt {1258} \), thỏa mãn
Vậy PT (1) có 2 nghiệm là x = 3; x = 35
b) \(\sqrt {{x^2} + 25x - 26} = \sqrt {x - {x^2}} \) (2)
Bình phương 2 vế của (2) ta được:
\({x^2} + 25x - 26 = x - {x^2} \Leftrightarrow 2{x^2} + 24x - 26 = 0 \Leftrightarrow x = - 13\) hoặc x = 1
+) Thay x = -13 vào PT (2): \(\sqrt {{{( - 13)}^2} + 25.( - 13) - 26} = \sqrt {( - 13) - {{( - 13)}^2}} \Leftrightarrow \sqrt { - 182} = \sqrt { - 182} \), vô lí
+) Thay x = 1 vào PT (2): \(\sqrt {{1^2} + 25.1 - 26} = \sqrt {1 - {1^2}} \Leftrightarrow \sqrt 0 = \sqrt 0 \), thỏa mãn
Vậy PT (2) có nghiệm duy nhất x = 1
c) \(\sqrt {4{x^2} + 8x - 37} = \sqrt { - {x^2} - 2x + 3} \) (3)
Bình phương 2 vế của (3) ta được:
\(4{x^2} + 8x - 37 = - {x^2} - 2x + 3 \Leftrightarrow 5{x^2} + 10x - 40 = 0 \Leftrightarrow x = - 4\) hoặc x = 2
+) Thay x = -4 vào PT (3): \(\sqrt {4.{{( - 4)}^2} + 8.( - 4) - 37} = \sqrt { - {{( - 4)}^2} - 2.( - 4) + 3} \Leftrightarrow \sqrt { - 5} = \sqrt { - 5} \), vô lí
+) Thay x = 2 vào PT (3): \(\sqrt {{{4.2}^2} + 8.2 - 37} = \sqrt { - {2^2} - 2.2 + 3} \Leftrightarrow \sqrt { - 5} = \sqrt { - 5} \), vô lí
Vậy PT (3) vô nghiệm
-- Mod Toán 10 HỌC247
-
Thực hiện giải và biện luận phương trình sau theo tham số \(m\), biết: \((2m + 1)x – 2m = 3x – 2\).
bởi Trinh Hung 11/09/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 6.22 trang 27 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.23 trang 27 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.29 trang 21 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.30 trang 21 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.31 trang 21 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.32 trang 21 SBT Toán 10 Kết nối tri thức tập 2 - KNTT