Giải bài 4 trang 35 SGK Toán 10 Chân trời sáng tạo tập 2
Cho \(A = \left\{ {{a_1};{a_2};{a_3};{a_4};{a_5}} \right\}\) là một tổ hợp có 5 phần tử. Chứng minh rằng tổ hợp con có số lẻ \(\left( {1,3,5} \right)\) phần tử của A bằng tập hợp con có số chẵn \(\left( {0,2,4} \right)\) phần tử của A
Hướng dẫn giải chi tiết Bài 4
Phương pháp giải
Bước 1: Tính các tổ hợp con
Bước 2: Sử dụng công thức nhị thức Newton
Lời giải chi tiết
Số tổ hợp con có x phần tử là số tổ hợp chập x của 5.
=> Số tổ hợp con có lẻ phần tử là: \(C_5^1 + C_5^3 + C_5^5=5+10+1=16\)
Số tổ con có chẵn phần tử là: \(C_5^0 + C_5^2 + C_5^4=1+10+5=16\)
\( \Rightarrow C_5^0 + C_5^2 + C_5^4 = C_5^1 + C_5^3 + C_5^5\) (đpcm)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 2 trang 35 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 35 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 35 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 47 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST