Giải bài 15 trang 10 SBT Toán 10 Cánh diều tập 2
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ta lập được bao nhiêu số tự nhiên:
a) Gồm 10 chữ số đôi một khác nhau?
b) Gồm 6 chữ số đôi một khác nhau?
Hướng dẫn giải chi tiết Bài 15
Phương pháp giải
a) Xét số tự nhiên có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}{a_8}{a_9}{a_{10}}} \).
b) Xét số tự nhiên có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \).
Lời giải chi tiết
a) Xét số tự nhiên có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}{a_8}{a_9}{a_{10}}} \).
Trường hợp 1: a1 có thể bằng 0 hoặc khác 0.
Với a1 có thể bằng 0 hoặc khác 0, mỗi số có dạng trên là một hoán vị của 10 chữ số đã cho.
Do đó, số các số có thể lập được trong trường hợp 1 là:
P10 = 10! (số).
Trường hợp 2: a1 = 0.
Vì a1 = 0 cố định nên 9 chữ số sau a1 đều khác 0 và chỉ có 9 chữ số đó thay đổi.
Suy ra, mỗi số có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}{a_8}{a_9}{a_{10}}} \) là một hoán vị của 9 chữ số khác 0 đã cho.
Do đó, số các số có thể lập được trong trường hợp 2 là:
P9 = 9! (số).
Vậy số các số tự nhiên có 10 chữ số đôi một khác nhau có thể lập được là:
10! – 9! = 3265920 (số).
b) Xét số tự nhiên có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \).
Trường hợp 1: a1 có thể bằng 0 hoặc khác 0.
Với a1 có thể bằng 0 hoặc khác 0, mỗi số có dạng trên là một chỉnh hợp chập 6 của 10 chữ số đã cho.
Do đó, số các số có thể lập được trong trường hợp 1 là: \(A_{10}^6\) (số).
Trường hợp 2: a1 = 0.
Vì a1 = 0 cố định nên 5 chữ số sau a1 đều khác 0 và chỉ có 5 chữ số đó thay đổi.
Suy ra, mỗi số có dạng \(\overline {0{a_2}{a_3}{a_4}{a_5}{a_6}} \) là một chỉnh hợp chập 5 của 9 chữ số khác 0 đã cho.
Do đó, số các số có thể lập được trong trường hợp 2 là: \(A_9^5\) (số).
Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau có thể lập được là:
\(A_{10}^6 - A_9^5\) = 136080 (số).
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.