YOMEDIA
NONE

Chứng minh (5^121-35^15) chia hết cho 10

a/ Chứng minh rằng : ( 5121 - 3515 ) chia hết cho 10

b/ So sánh ( 13 - 12 )2015 và 517 . 514 : 531

c/ 9 + 5x = 47 : 43 - 34

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • a) Xét:

    5121 có chữ số tận cùng là 5. Đặt 5121 = \(\overline{A5}\)

    3515 có chữ số tận cùng là 5. Đặt 3515 = \(\overline{B5}\)

    Do đó \(5^{121}-35^{15}=\overline{A5}-\overline{B5}=\overline{C0}⋮10\left(đpcm\right)\)

    b) Ta có:

    \(\left(13-12\right)^{2015}=1^{2015}=1\)

    \(5^{17}.5^{14}:5^{31}=5^0=1\)

    Vậy \(\left(13-12\right)^{2015}=5^{17}.5^{14}:5^{31}\)

    c) \(9+5x=4^7:4^3-3^4\)

    \(\Leftrightarrow9+5x=4^4-3^4\)

    \(\Leftrightarrow9+5x=256-81\)

    \(\Leftrightarrow9+5x=175\)

    \(\Leftrightarrow5x=175-9=166\)

    \(\Rightarrow x=166:5=33\dfrac{1}{5}\)

      bởi nguyễn thị sáng 21/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON