Tính xác suất để trong 4 học sinh lấy ra có đủ học sinh của 3 lớp
Để chuẩn bị kỉ niệm 50 năm thành lập trường THPT Cổ Loa, nhà trường thành lập hai tổ học sinh để đón tiếp các vị đại biểu. Tổ một gồm 3 học sinh 12A1 và 2 học sinh 12A2; tổ hai gồm 3 học sinh 12A1 và 4 học sinh 12A3. Lấy ngẫu nhiên từ mỗi tổ 2 học sinh. Tính xác suất để trong 4 học sinh lấy ra có đủ học sinh của 3 lớp.
Trả lời (10)
-
Chọn 2 học sinh thuộc tổ 1 rồi chọn 2 học sinh thuộc tổ 2 suy ra \(n(\Omega )=C_{5}^{2}.C_{7}^{2}=210\)
Gọi A là biến cố “4 học sinh được chọn có đủ ba lớp”
Ta có các trường hợp xảy ra:
TH1: Tổ 1 lấy 1 học sinh A1, 1 học sinh A2, tổ 2 lấy 1 học sinh A1 và 1 học sinh A3
Có \(C_{3}^{1}.C_{2}^{1}.C_{3}^{1}.C_{4}^{1}=72\) cách chọn trong trường hợp này
TH2: Tổ 1 lấy 1 học sinh A1, 1 học sinh A2, tổ 2 lấy 2 học sinh A
Có \(C_{3}^{1}.C_{2}^{1}.C_{4}^{2}=36\) cách chọn trong trường hợp này.
TH3: Tổ 1 lấy 2 học sinh A2, tổ 2 lấy 1 học sinh A1 và 1 học sinh A3
Có \(C_{2}^{2}.C_{3}^{1}.C_{4}^{1}=12\) cách chọn trong trường hợp này.
Số kết quả thuận lợi cho A, n(A) =120
Vậy xác suất cần tìm là: \(P(A)=\frac{n(A)}{n(\Omega )}=\frac{120}{210}=\frac{4}{7}\)bởi Bánh Mì 09/02/2017Like (1) Báo cáo sai phạm -
Chọn 2 học sinh thuộc tổ 1 rồi chọn 2 học sinh thuộc tổ 2 suy ra
Gọi A là biến cố “4 học sinh được chọn có đủ ba lớp”
Ta có các trường hợp xảy ra:
TH1: Tổ 1 lấy 1 học sinh A1, 1 học sinh A2, tổ 2 lấy 1 học sinh A1 và 1 học sinh A3
Có cách chọn trong trường hợp này
TH2: Tổ 1 lấy 1 học sinh A1, 1 học sinh A2, tổ 2 lấy 2 học sinh A
Có cách chọn trong trường hợp này.
TH3: Tổ 1 lấy 2 học sinh A2, tổ 2 lấy 1 học sinh A1 và 1 học sinh A3
Có cách chọn trong trường hợp này.
Số kết quả thuận lợi cho A, n(A) =120
Vậy xác suất cần tìm là:Các ô trên bạn tự tính nha
bởi Uzumaki Naruto 04/11/2018Like (13) Báo cáo sai phạm -
Đáp án: 4/7
( Cách làm như trên)
bởi Uzumaki Naruto 04/11/2018Like (13) Báo cáo sai phạm -
Đáp án là 4/7 bạn nhé
bởi Giáo sư Học sinh 12/11/2018Like (1) Báo cáo sai phạm
Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
Khai triển nhị thức của new tơn(2x 1)¹⁰
24/11/2022 | 0 Trả lời
-
Có bao nhiêu cách chia 9 người làm 3 nhóm, mỗi nhóm 3 người?
26/11/2022 | 2 Trả lời
-
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD), AB là đáy lớn. I,J lần
lượt là trung điểm của SA, SB. M thuộc cạnh SD.a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Chứng minh rằng: IJ // (SCD).
c) Tìm giao điểm của SC và mặt phẳng (IJM).
Vẽ hình luôn giúp em . Em cảm ơn
04/12/2022 | 0 Trả lời
-
Giải dùm mình với ạ
07/12/2022 | 0 Trả lời
-
cho hình chóp S.ABCD có đáy là hình bình hành tâm O . gọi M,N lần lượt là hai điểm nằm trên cạnh SB,SD sao cho SB=4MB ; SD=4ND. Gọi P là điểm đối xứng với O qua C . chứng minh
21/12/2022 | 0 Trả lời
-
Tập xác định của hàm sô y= 3cot.x + cos.2x là gì ?
21/12/2022 | 0 Trả lời
-
Giúp em với ạ cần gấp!!!
24/12/2022 | 0 Trả lời
-
Giải thích dùm em với
26/12/2022 | 0 Trả lời
-
Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn AD và AD=2BC. Gọi 0 là giao điểm của AC và BD;
a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD).
b) Gọi I, J lần lượt là trọng tâm của tam giác SAB và SCD. Chứng minh IJ // (ABCD)..
26/12/2022 | 0 Trả lời
-
Tổng các nghiệm của phương trình cos 2x=2/3 trong khoảng [0;π] bằng bao nhiêu?
27/12/2022 | 0 Trả lời
-
cho dãy số (Un) với U1 = -3 U3 = -243
a)hỏi số -19683 là số hạng thứ mấy của dãy số
b)Tính tổng của 20 dãy số
24/02/2023 | 0 Trả lời
-
cho hình chóp sabcd có đáy abcd là hình vuông cạnh bên sa vuông góc với mặt đáy sa=ab=a gọi phi là góc giữa sb và mp(sac)tính phi
02/03/2023 | 0 Trả lời
-
lim --> âm vô cùng X+√x^2+1/ 2x+3
05/03/2023 | 0 Trả lời
-
Cho hình chóp S.ABCD có đáy hình vuông SC⊥ (ABCD). Gọi I, J lần lượt là hình chiếu vuông góc của C lên SB, SD
a/ Chứng minh AB ⊥ (SBC)
b/ Chứng minh AD ⊥ (SCD)
c/ Chứng minh SA ⊥ CI
d/ Chứng minh (SAC) ⊥ (CIJ)
15/03/2023 | 0 Trả lời
-
lim xm-xn/x-1 (lim x tiến tới 1)
16/03/2023 | 0 Trả lời
-
Cho hàm số: \(f(x)=\left\{ \begin{align}
& \frac{\sqrt{7x-10}-2}{x-2},x>2 \\
& mx+3,x\le 2 \\
\end{align} \right.\). Tìm m để hàm số liên tục tại x = 2.
16/03/2023 | 2 Trả lời
-
Cho phương trình: \(\left( {{m}^{4}}+m+1 \right){{x}^{2019}}+{{x}^{5}}-32\,\,=\,\,0\) , m là tham số
CMR phương trình trên luôn có ít nhất một nghiệm dương với mọi giá trị của tham số m
17/03/2023 | 1 Trả lời
-
Tìm giới han sau: \(\underset{x\to -1}{\mathop{\lim }}\,\left( -5{{x}^{2}}+7x-4 \right)\)
16/03/2023 | 1 Trả lời
-
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB=BC= a, AD=2a. Cạnh bên SA vuông góc với mặt đáy và SA=a. Chứng minh BC vuông góc với mặt phẳng (SAB). Từ đó suy ra tam giác SBC vuông tại B.
17/03/2023 | 1 Trả lời
-
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B,
AB=BC= a, AD=2a; Cạnh bên SA vuông góc với mặt đáy và SA=a.
a) Chứng minh BC vuông góc với mặt phẳng (SAB). Từ đó suy ra tam giác SBC vuông tại B.
b) Xác định và tính góc giữa SC và mặt phẳng (SAD).
17/03/2023 | 1 Trả lời
-
Hàm số \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp 5 bằng:
A. \({y^{(5)}} = - \frac{{120}}{{{{(x + 1)}^6}}}\)
B. \({y^{(5)}} = \frac{{120}}{{{{(x + 1)}^6}}}\)
C. \({y^{(5)}} = \frac{1}{{{{(x + 1)}^6}}}\)
D. \({y^{(5)}} = - \frac{1}{{{{(x + 1)}^6}}}\)
18/03/2023 | 1 Trả lời
-
A. \({y^{''}} = - \frac{{2\sin x}}{{{{\cos }^3}x}}\)
B. \({y^{''}} = \frac{1}{{{{\cos }^2}x}}\)
C. \({y^{''}} = - \frac{1}{{{{\cos }^2}x}}\)
D. \({y^{''}} = \frac{{2\sin x}}{{{{\cos }^3}x}}\)
18/03/2023 | 1 Trả lời
-
A. M=sinx.
B. M=6sinx.
C. M=6cosx.
D. M=−6sinx.
18/03/2023 | 1 Trả lời
-
Cho Hình chóp SABCD có đáy ABCD là hình vuông tâm 0 cạnh a, SA vuông góc (ABCD) , SA =3a.
a) tính [SO;^(ABCD)] = ?
b) tính [(SCD);^(ABCD)]=?
04/04/2023 | 0 Trả lời
-
Cho hình chóp SABCD, ABCD là hình chữ nhật, AB = 2a, BD = 4a, I là trung điểm AB, SI = 6a
a) chứng minh (SBC) vuông góc (SAB)
b) tính ( SC,(ABCD) )
c) tính ( SC,SAB) )
d) tính góc giữa (SCD) và (ABCD)
e) tính góc giữa (SAC) và (ABCD)
09/04/2023 | 0 Trả lời