YOMEDIA
NONE

Tìm xác suất để 4 đỉnh được chọn từ đa giác đều 12 đỉnh tạo hcn

Cho 1 đa giác đều 12 đỉnh \(A_1A_2A_3A_4....A_{12}\) nội tiếp đường tròn (O). Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất để 4 đỉnh được chọn tạo ra thành 1 hình chữ nhật

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Không gian mẫu \(\Omega\) là tập hợp tất cả các cách chọn ngẫu nhiên 4 đỉnh trong 12 đỉnh 

    Ta có \(n\left(\Omega\right)=C_{12}^4=495\)

    Gọi A là biến cố : 4 đỉnh được chọn tạo thành một hình chữ nhật"

    Gọi đường chéo của đa giác đều \(A_1A_2A_3...A_{12}\) đi qua tâm đường tròn (O) là đường chéo lớn thì đa giác đã cho có 6 đường chéo lớn.

    Mỗi hình chữ nhật có các đỉnh là 4 đỉnh trong 12 điểm \(A_1,A_2,A_3,...A_{12}\) có các đường chéo là 2 đường chéo lớn. Ngược lại, mỗi cặp đường chéo lớn có các đầu mút là 4 đỉnh của một hình chữ nhâtk.

    Do đó, số hình chữ nhật được tạo thành là : \(n\left(A\right)=C_6^2=15\)

    Vậy xác suất cần tính là \(P\left(A\right)=\frac{n\left(A\right)}{n\left(\Omega\right)}=\frac{15}{495}=\frac{1}{33}\)

      bởi Nguyễn Danh Tuấn 01/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON