YOMEDIA
NONE

Tìm nghiệm của phương trình \(\cos 2x \cos 4x=1\) thuộc đoạn \(\left[ { - \pi ; \pi} \right]\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: \(\cos 2x \cos 4x=1\)

    \(\Leftrightarrow \dfrac{1}{2}[\cos(4x+2x)+\cos(4x-2x)]=1\)

    \(\Leftrightarrow \dfrac{1}{2}(\cos 6x+\cos 2x)=1\)

    \(\Leftrightarrow \cos 6x+\cos 2x=2\)

    Vì \(-1\le\cos 6x\le1\) và \(-1\le\cos 2x\le1\)

    \( \Rightarrow  - 2 \le \cos 6x + \cos 2x \le 2\)

    Nên phương trình xảy ra khi dấu "=" thứ hai trong bđt trên xảy ra

    \(\Leftrightarrow \left\{ \begin{array}{l} \cos 6x=1\\\cos 2x=1\end{array} \right. \)

    \(\Leftrightarrow \left\{ \begin{array}{l} 6x=k2\pi ,k\in\mathbb{Z}\\2x=k2\pi  ,k\in\mathbb{Z}\end{array} \right. \)

    \(\Leftrightarrow \left\{ \begin{array}{l} x=k\dfrac{\pi}{3} ,k\in\mathbb{Z}\\x=k\pi  ,k\in\mathbb{Z}\end{array} \right. \)

    \(\Leftrightarrow x=k\pi  ,k\in\mathbb{Z}\)

    Với \(k=-1\), \(k=0\) và \(k=1\) phương trình có 3 nghiệm \(\pi\), \(0\) và \(\pi\) thuộc đoạn \([-\pi;\pi]\)

      bởi Nguyễn Thị Trang 20/09/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON