YOMEDIA
NONE

Ta có tứ diện \(S.ABC\) có \(G\) là trọng tâm tam giác \(ABC\), điểm \(M\) nằm trên đoạn \(SA\) sao cho \(AM = 2MS\). Mệnh đề nào dưới đây đúng?

A. \(\overrightarrow {MG}  =  - \frac{1}{6}\overrightarrow {SA}  + \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \)

B. \(\overrightarrow {MG}  = \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \)

C. \(\overrightarrow {MG}  =  - \frac{1}{3}\overrightarrow {SA}  + \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \)

D. \(\overrightarrow {MG}  = \frac{2}{3}\overrightarrow {SA}  + \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(\begin{array}{l}\overrightarrow {MG}  = \overrightarrow {MS}  + \overrightarrow {SG} \\ =  - \frac{1}{3}\overrightarrow {SA}  + \frac{1}{3}\left( {\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC} } \right)\\ =  - \frac{1}{3}\overrightarrow {SA}  + \frac{1}{3}\overrightarrow {SA}  + \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \\ = \frac{1}{3}\overrightarrow {SB}  + \frac{1}{3}\overrightarrow {SC} \end{array}\)

    Chọn B.

      bởi hồng trang 18/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON