YOMEDIA
NONE

Hãy giải pt lượng giác: \(5{\sin ^2}x - 2\sin 2x + 7{\cos ^2}x = 4\)

Hãy giải pt lượng giác:  \(5{\sin ^2}x - 2\sin 2x + 7{\cos ^2}x = 4\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(\,\,5{\sin ^2}x - 2\sin 2x + 7{\cos ^2}x = 4\)

    \(\Leftrightarrow 5{\sin ^2}x - 4\sin x\cos x + 7{\cos ^2}x = 4\)

    TH1: \(\cos x = 0 \Leftrightarrow {\sin ^2}x = 1\)

    \(\Leftrightarrow 5 = 4\) (Vô nghiệm)

    TH2: \(\cos x \ne 0 \Leftrightarrow x \ne {\pi  \over 2} + k\pi \)

    Chia cả 2 vế của phương trình cho \({\cos ^2}x\) ta được:

    \(\begin{array}{l}5{\tan ^2}x - 4\tan x + 7 = 4\left( {1 + {{\tan }^2}x} \right)\\ \Leftrightarrow {\tan ^2}x - 4\tan x + 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}\tan x = 1\\\tan x = 3\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x = \arctan 3 + k\pi \end{array} \right.\left( {k \in Z} \right)\left( {tm} \right)\end{array}\)

    Vậy \(x \in \left\{ {\dfrac{\pi }{4} + k\pi ;\arctan 3 + k\pi |k \in Z} \right\}\).

      bởi Lê Nguyễn Hạ Anh 17/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON