YOMEDIA
NONE

Chứng minh rằng phương trình \(x^5– 3x^4+ 5x – 2 = 0\) có ít nhất ba nghiệm nằm trong khoảng \((-2, 5)\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đặt \(f(x) = x^5– 3x^4+ 5x – 2\), ta có:

    +) Hàm số \(f(x)\) là hàm số đa thức liên tục trên \(\mathbb R\).

    \(\eqalign{
    & \left\{ \matrix{
    f(0) = - 2 < 0 \hfill \cr
    f(1) = 1 - 3 + 5 - 2 = 1 > 0 \hfill \cr
    f(2) = {2^5} - {3.2^4} + 5.2 - 2 = - 8 < 0 \hfill \cr
    f(3) = {3^5} - {3.3^4} + 5.3 - 2 = 13 > 0 \hfill \cr} \right. \cr
    & \Rightarrow \left\{ \matrix{
    f(0).f(1) < 0\,\,\,\,(1) \hfill \cr
    f(1).f(2) < 0\,\,\,\,(2) \hfill \cr
    f(2).f(3) < 0\,\,\,\,(3) \hfill \cr} \right. \cr} \)

    Do đó \(f(x)\) có ít nhất một nghiệm trên khoảng \((0, 1)\), một nghiệm trên khoảng \((1, 2)\), một nghiệm trên khoảng \((2, 3)\).

    Mà các khoảng \(\left( {0;1} \right)\), \( \left( {1;2} \right)\) và \( \left( {2;3} \right)\) đôi một không có điểm chung.

    Vậy phương trình \(x^5– 3x^4+ 5x – 2=0\) có ít nhất ba nghiệm trên khoảng \((-2, 5)\) (đpcm)

      bởi Tay Thu 24/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON